File size: 15,782 Bytes
4e7ec06 1100e65 b09f327 639051f 4e7ec06 7a3a01f bc3b705 110c781 4e7ec06 110c781 6a11fc5 c61e81a f54764f 64832c1 953582f 4e7ec06 ce4312e c8ceed5 7594178 79bc005 c8ceed5 ee2cdf3 4288efb 639051f 4e7ec06 82b85b5 4e7ec06 82b85b5 4e7ec06 4ed1e63 53bdf99 110c781 e99776b 110c781 52b9389 b86b204 110c781 53bdf99 a123d64 53bdf99 e72ac8d e99776b e72ac8d e99776b e72ac8d b5dd7e3 f97123b e72ac8d bafe69e eb57b1b 002ed93 ecdf41d 64832c1 eb57b1b 64832c1 eb57b1b 64832c1 eb57b1b 64832c1 7ab0236 64832c1 eb57b1b 64832c1 eb57b1b fd7e9e7 110c781 4e7ec06 4288efb 4e7ec06 110c781 6a11fc5 e72ac8d c61e81a 237cc21 e72ac8d 237cc21 110c781 237cc21 6a11fc5 f97123b 4288efb c61e81a 4e7ec06 237cc21 f54764f 237cc21 bb294a9 237cc21 f54764f c61e81a f97123b 1e94ca7 f54764f fd7e9e7 f54764f fd7e9e7 f54764f bb294a9 c61e81a bb294a9 6a11fc5 e72ac8d e99776b 110c781 b5dd7e3 e72ac8d b5dd7e3 ad0756f bd33635 ad0756f 2877dcf ad0756f e72ac8d 110c781 bafe69e e72ac8d 4e7ec06 110c781 4e7ec06 c61e81a 4288efb b3174ad 52b9389 2d36724 6bd7229 2d36724 6bd7229 2d36724 6bd7229 2998fbf 6bd7229 52b9389 6bd7229 bd33635 52b9389 6bd7229 52b9389 6bd7229 52b9389 6bd7229 52b9389 6bd7229 52b9389 53bdf99 110c781 4e7ec06 52b9389 110c781 53bdf99 500dce0 110c781 04d8424 110c781 52b9389 110c781 b8cd6c2 110c781 57c2b38 f97123b 57c2b38 110c781 52b9389 4e7ec06 52b9389 4e7ec06 52b9389 b86b204 6575bf4 4e7ec06 31b9df5 4e7ec06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
import base64
import io
import os
import threading
import tempfile
import logging
import openai
from dash import Dash, dcc, html, Input, Output, State, callback, callback_context
import dash_bootstrap_components as dbc
from pydub import AudioSegment
import requests
import mimetypes
import urllib.parse
import subprocess
import json
from tqdm import tqdm
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Try to import moviepy with the simpler import statement
try:
from moviepy import VideoFileClip, AudioFileClip
logger.info("MoviePy (VideoFileClip) successfully imported")
except ImportError as e:
logger.error(f"Error importing MoviePy (VideoFileClip): {str(e)}")
logger.error("Please ensure moviepy is installed correctly")
raise
# Supported file formats
AUDIO_FORMATS = ['.wav', '.mp3', '.ogg', '.flac', '.aac', '.m4a', '.wma']
VIDEO_FORMATS = ['.mp4', '.avi', '.mov', '.flv', '.wmv', '.mkv', '.webm']
SUPPORTED_FORMATS = AUDIO_FORMATS + VIDEO_FORMATS
# Initialize the Dash app
app = Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
# Global variables
generated_file = None
transcription_text = ""
# Set up OpenAI API key
openai.api_key = os.getenv("OPENAI_API_KEY")
app.layout = dbc.Container([
html.H1("Audio/Video Transcription and Diarization App", className="text-center my-4"),
dbc.Card([
dbc.CardBody([
dcc.Upload(
id='upload-media',
children=html.Div([
'Drag and Drop or ',
html.A('Select Audio/Video File')
]),
style={
'width': '100%',
'height': '60px',
'lineHeight': '60px',
'borderWidth': '1px',
'borderStyle': 'dashed',
'borderRadius': '5px',
'textAlign': 'center',
'margin': '10px'
},
multiple=False
),
html.Div(id='output-media-upload'),
dbc.Input(id="url-input", type="text", placeholder="Enter audio/video URL", className="mb-3"),
dbc.Button("Process Media", id="process-url-button", color="primary", className="mb-3"),
dbc.Spinner(html.Div(id='transcription-status'), color="primary", type="grow"),
html.H4("Diarized Transcription Preview", className="mt-4"),
html.Div(id='transcription-preview', style={'whiteSpace': 'pre-wrap'}),
html.Br(),
dbc.Button("Download Transcription", id="btn-download", color="primary", className="mt-3 me-2", disabled=True),
dbc.Button("Summarize Transcript", id="btn-summarize", color="secondary", className="mt-3 me-2", disabled=True),
dbc.Button("Generate Meeting Minutes", id="btn-minutes", color="info", className="mt-3", disabled=True),
dcc.Download(id="download-transcription"),
dbc.Spinner(html.Div(id='summary-status'), color="secondary", type="grow"),
dbc.Spinner(html.Div(id='minutes-status'), color="info", type="grow"),
])
])
], fluid=True)
def chunk_audio(audio_segment, chunk_size_ms=60000):
chunks = []
for i in range(0, len(audio_segment), chunk_size_ms):
chunks.append(audio_segment[i:i+chunk_size_ms])
return chunks
def transcribe_audio_chunks(chunks):
transcriptions = []
for i, chunk in enumerate(chunks):
logger.info(f"Transcribing chunk {i+1}/{len(chunks)}")
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_audio_file:
chunk.export(temp_audio_file.name, format="wav")
with open(temp_audio_file.name, 'rb') as audio_file:
transcript = openai.Audio.transcribe("whisper-1", audio_file)
transcriptions.append(transcript.get('text', ''))
os.unlink(temp_audio_file.name)
return ' '.join(transcriptions)
def download_file(url):
with requests.Session() as session:
# First, send a GET request to get the final URL after redirects
response = session.get(url, allow_redirects=True, stream=True)
final_url = response.url
logger.info(f"Final URL after redirects: {final_url}")
# Get the total file size
total_size = int(response.headers.get('content-length', 0))
# Use a default name with .mp4 extension
filename = 'downloaded_video.mp4'
# Save the content to a temporary file with .mp4 extension
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_file:
progress_bar = tqdm(total=total_size, unit='iB', unit_scale=True, desc=filename)
for chunk in response.iter_content(chunk_size=8192):
size = temp_file.write(chunk)
progress_bar.update(size)
progress_bar.close()
temp_file_path = temp_file.name
# Check if the downloaded file size matches the expected size
actual_size = os.path.getsize(temp_file_path)
if total_size != 0 and actual_size != total_size:
logger.error(f"Downloaded file size ({actual_size} bytes) does not match expected size ({total_size} bytes)")
raise Exception(f"Incomplete download. Expected {total_size} bytes, got {actual_size} bytes.")
logger.info(f"File downloaded and saved as: {temp_file_path}")
logger.info(f"File size: {actual_size} bytes")
return temp_file_path
def get_file_info(file_path):
try:
result = subprocess.run(['ffprobe', '-v', 'quiet', '-print_format', 'json', '-show_format', '-show_streams', file_path],
capture_output=True, text=True, check=True)
return json.loads(result.stdout)
except subprocess.CalledProcessError as e:
logger.error(f"Error getting file info: {str(e)}")
return None
def process_media(file_path, is_url=False):
global generated_file, transcription_text
temp_file = None
wav_path = None
try:
if is_url:
logger.info(f"Processing URL: {file_path}")
try:
temp_file = download_file(file_path)
file_size = os.path.getsize(temp_file)
logger.info(f"URL content downloaded: {temp_file} (Size: {file_size} bytes)")
if file_size < 1000000: # Less than 1MB
raise Exception(f"Downloaded file is too small ({file_size} bytes). Possible incomplete download.")
except Exception as e:
logger.error(f"Error downloading URL content: {str(e)}")
return f"Error downloading URL content: {str(e)}", False
# For downloaded files, we know it's an MP4, so we can skip file type determination
is_video = True
is_audio = False
else:
# For uploaded files, we still need to determine the file type
logger.info("Processing uploaded file")
content_type, content_string = file_path.split(',')
decoded = base64.b64decode(content_string)
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.tmp')
temp_file.write(decoded)
temp_file.close()
temp_file = temp_file.name
logger.info(f"Uploaded file saved: {temp_file}")
# Get file info for uploaded files
file_info = get_file_info(temp_file)
if not file_info:
return "Unable to process file: Could not determine file type", False
logger.info(f"File info: {json.dumps(file_info, indent=2)}")
# Determine if it's audio or video
is_audio = any(stream['codec_type'] == 'audio' for stream in file_info['streams'])
is_video = any(stream['codec_type'] == 'video' for stream in file_info['streams'])
# Convert to WAV using ffmpeg
wav_path = tempfile.NamedTemporaryFile(delete=False, suffix='.wav').name
try:
if is_video:
# Extract audio from video
cmd = ['ffmpeg', '-y', '-i', temp_file, '-vn', '-acodec', 'pcm_s16le', '-ar', '44100', '-ac', '2', wav_path, '-v', 'verbose']
elif is_audio:
# Convert audio to WAV
cmd = ['ffmpeg', '-y', '-i', temp_file, '-acodec', 'pcm_s16le', '-ar', '44100', '-ac', '2', wav_path, '-v', 'verbose']
else:
return "Unsupported file type: Neither audio nor video detected", False
result = subprocess.run(cmd, check=True, capture_output=True, text=True)
logger.info(f"FFmpeg command output: {result.stdout}")
logger.info(f"Audio extracted to WAV: {wav_path}")
except subprocess.CalledProcessError as e:
logger.error(f"FFmpeg conversion failed. Error output: {e.stderr}")
logger.error(f"FFmpeg command: {e.cmd}")
logger.error(f"Return code: {e.returncode}")
return f"FFmpeg conversion failed: {e.stderr}", False
# Chunk the audio file
audio = AudioSegment.from_wav(wav_path)
chunks = chunk_audio(audio)
logger.info(f"Audio chunked into {len(chunks)} segments")
# Transcribe chunks
transcription = transcribe_audio_chunks(chunks)
logger.info(f"Transcription completed. Total length: {len(transcription)} characters")
# Diarization using OpenAI
diarization_prompt = f"""
The following is a transcription of a conversation. Please identify different speakers and label them as Speaker 1, Speaker 2, etc. unless the speaker idententifies themselves by name in that case use their name. Format the output as a series of speaker labels followed by their dialogue. Here's the transcription:
{transcription}
Please analyze the content and speaking styles to differentiate between speakers. If they give their name, assume that is the speaker and assume who is speaking bsed on speech patterns. Consider changes in topic, speaking patterns, and any contextual clues that might indicate a change in speaker.
"""
diarization_response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are an AI assistant skilled in analyzing conversations and identifying different speakers."},
{"role": "user", "content": diarization_prompt}
]
)
formatted_transcript = diarization_response['choices'][0]['message']['content']
transcription_text = formatted_transcript
generated_file = io.BytesIO(transcription_text.encode())
logger.info("Transcription and diarization completed successfully")
return "Transcription and diarization completed successfully!", True
except Exception as e:
logger.error(f"Error during processing: {str(e)}")
return f"An error occurred: {str(e)}", False
finally:
if temp_file and os.path.exists(temp_file):
os.unlink(temp_file)
if wav_path and os.path.exists(wav_path):
os.unlink(wav_path)
@app.callback(
[Output('summary-status', 'children'),
Output('minutes-status', 'children'),
Output('download-transcription', 'data')],
[Input('btn-summarize', 'n_clicks'),
Input('btn-minutes', 'n_clicks'),
Input('btn-download', 'n_clicks')],
State('transcription-preview', 'children'),
prevent_initial_call=True
)
def handle_document_actions(summarize_clicks, minutes_clicks, download_clicks, transcript):
ctx = callback_context
if not ctx.triggered:
return "", "", None
button_id = ctx.triggered[0]['prop_id'].split('.')[0]
if button_id == 'btn-summarize':
summary_prompt = f"""
Please provide a detailed summary of the following transcript. Include the main topics discussed and key points. Format it for readability in paragraph format writing it wikipedia style:
{transcript}
Summary:
"""
try:
summary_response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are an AI assistant skilled in summarizing conversations."},
{"role": "user", "content": summary_prompt}
]
)
summary = summary_response['choices'][0]['message']['content']
return "", "", dcc.send_string(summary, "transcript_summary.txt")
except Exception as e:
logger.error(f"Error generating summary: {str(e)}")
return f"An error occurred while generating the summary: {str(e)}", "", None
elif button_id == 'btn-minutes':
minutes_prompt = f"""
Please transform the following transcript into structured meeting minutes. Include the following sections:
1. Meeting Title
2. Date and Time (if mentioned)
3. Attendees (if mentioned)
4. Agenda Items
5. Key Decisions
6. Action Items
7. Next Steps
Transcript:
{transcript}
Meeting Minutes:
"""
try:
minutes_response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are an AI assistant skilled in creating structured meeting minutes from transcripts."},
{"role": "user", "content": minutes_prompt}
]
)
minutes = minutes_response['choices'][0]['message']['content']
return "", "", dcc.send_string(minutes, "meeting_minutes.txt")
except Exception as e:
logger.error(f"Error generating meeting minutes: {str(e)}")
return "", f"An error occurred while generating meeting minutes: {str(e)}", None
elif button_id == 'btn-download':
return "", "", dcc.send_bytes(generated_file.getvalue(), "diarized_transcription.txt")
return "", "", None
@app.callback(
[Output('output-media-upload', 'children'),
Output('transcription-status', 'children'),
Output('transcription-preview', 'children'),
Output('btn-download', 'disabled'),
Output('btn-summarize', 'disabled'),
Output('btn-minutes', 'disabled')],
[Input('upload-media', 'contents'),
Input('process-url-button', 'n_clicks')],
[State('upload-media', 'filename'),
State('url-input', 'value')]
)
def update_output(contents, n_clicks, filename, url):
global transcription_text
ctx = callback_context
if not ctx.triggered:
return "No file uploaded or URL processed.", "", "", True, True, True
# Clear the preview pane
transcription_preview = ""
if contents is not None:
status_message, success = process_media(contents)
elif url:
status_message, success = process_media(url, is_url=True)
else:
return "No file uploaded or URL processed.", "", "", True, True, True
if success:
preview = transcription_text[:1000] + "..." if len(transcription_text) > 1000 else transcription_text
return f"Media processed successfully.", status_message, preview, False, False, False
else:
return "Processing failed.", status_message, transcription_preview, True, True, True
if __name__ == '__main__':
print("Starting the Dash application...")
app.run(debug=True, host='0.0.0.0', port=7860)
print("Dash application has finished running.") |