bluenevus's picture
Update app.py
02ebd05 verified
raw
history blame
7.92 kB
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import snapshot_download, login
import logging
import os
import spaces
import warnings
from snac import SNAC
import numpy as np
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=RuntimeWarning)
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")
model = None
tokenizer = None
snac_model = None
EMOTIVE_TAGS = ["<laugh>", "<sigh>", "<gasp>", "<cry>", "<yawn>"]
@spaces.GPU()
def load_model():
global model, tokenizer, snac_model
try:
logger.info("Loading SNAC model...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(device)
logger.info("Loading Orpheus model...")
model_name = "canopylabs/orpheus-3b-0.1-ft"
hf_token = os.environ.get("HUGGINGFACE_TOKEN")
if not hf_token:
raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")
login(token=hf_token)
snapshot_download(
repo_id=model_name,
use_auth_token=hf_token,
allow_patterns=["config.json", "*.safetensors", "model.safetensors.index.json"],
ignore_patterns=["optimizer.pt", "pytorch_model.bin", "training_args.bin", "scheduler.pt", "tokenizer.*"]
)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
logger.info(f"Orpheus model and tokenizer loaded to {device}")
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
raise
def process_prompt(prompt, voice, tokenizer, device):
prompt = f"{voice}: {prompt}"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
start_token = torch.tensor([[128259]], dtype=torch.int64)
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64)
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
attention_mask = torch.ones_like(modified_input_ids)
return modified_input_ids.to(device), attention_mask.to(device)
def parse_output(generated_ids):
token_to_find = 128257
token_to_remove = 128258
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
if len(token_indices[1]) > 0:
last_occurrence_idx = token_indices[1][-1].item()
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
else:
cropped_tensor = generated_ids
processed_rows = []
for row in cropped_tensor:
masked_row = row[row != token_to_remove]
processed_rows.append(masked_row)
code_lists = []
for row in processed_rows:
row_length = row.size(0)
new_length = (row_length // 7) * 7
trimmed_row = row[:new_length]
trimmed_row = [t - 128266 for t in trimmed_row]
code_lists.append(trimmed_row)
return code_lists[0]
def redistribute_codes(code_list, snac_model):
device = next(snac_model.parameters()).device
layer_1, layer_2, layer_3 = [], [], []
for i in range((len(code_list)+1)//7):
layer_1.append(code_list[7*i])
layer_2.append(code_list[7*i+1]-4096)
layer_3.append(code_list[7*i+2]-(2*4096))
layer_3.append(code_list[7*i+3]-(3*4096))
layer_2.append(code_list[7*i+4]-(4*4096))
layer_3.append(code_list[7*i+5]-(5*4096))
layer_3.append(code_list[7*i+6]-(6*4096))
codes = [
torch.tensor(layer_1, device=device).unsqueeze(0),
torch.tensor(layer_2, device=device).unsqueeze(0),
torch.tensor(layer_3, device=device).unsqueeze(0)
]
audio_hat = snac_model.decode(codes)
return audio_hat.detach().squeeze().cpu().numpy()
@spaces.GPU()
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
if not text.strip():
return None
try:
progress(0.1, "Processing text...")
input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
progress(0.3, "Generating speech tokens...")
with torch.no_grad():
generated_ids = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
num_return_sequences=1,
eos_token_id=128258,
)
progress(0.6, "Processing speech tokens...")
code_list = parse_output(generated_ids)
progress(0.8, "Converting to audio...")
audio_samples = redistribute_codes(code_list, snac_model)
return (24000, audio_samples)
except Exception as e:
print(f"Error generating speech: {e}")
return None
with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
gr.Markdown(f"""
# 🎵 [Orpheus Text-to-Speech](https://github.com/canopyai/Orpheus-TTS)
Enter your text below and hear it converted to natural-sounding speech with the Orpheus TTS model.
## Tips for better prompts:
- Add paralinguistic elements like {", ".join(EMOTIVE_TAGS)} or `uhm` for more human-like speech.
- Longer text prompts generally work better than very short phrases
""")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="Text Input",
placeholder="Enter the text you want to convert to speech...",
lines=8
)
voice_select = gr.Dropdown(
choices=["tara", "leah", "jess", "leo", "dan", "mia", "zac", "zoe"],
value="tara",
label="Voice"
)
with gr.Accordion("Advanced Options", open=False):
temperature = gr.Slider(
minimum=0.1, maximum=1.0, value=0.6, step=0.1,
label="Temperature",
info="Higher values increase randomness in the output"
)
top_p = gr.Slider(
minimum=0.1, maximum=1.0, value=0.95, step=0.05,
label="Top-p",
info="Lower values increase determinism in the output"
)
repetition_penalty = gr.Slider(
minimum=1.0, maximum=2.0, value=1.1, step=0.1,
label="Repetition Penalty",
info="Higher values discourage repetitive patterns"
)
max_new_tokens = gr.Slider(
minimum=100, maximum=2000, value=1200, step=100,
label="Max Length",
info="Maximum length of generated audio (in tokens)"
)
with gr.Row():
submit_btn = gr.Button("Generate Speech", variant="primary")
clear_btn = gr.Button("Clear")
with gr.Column():
audio_output = gr.Audio(label="Generated Speech")
submit_btn.click(
generate_speech,
inputs=[text_input, voice_select, temperature, top_p, repetition_penalty, max_new_tokens],
outputs=audio_output
)
clear_btn.click(lambda: "", inputs=None, outputs=text_input)
if __name__ == "__main__":
try:
load_model()
demo.launch()
except Exception as e:
logger.error(f"Error launching the application: {str(e)}")