File size: 7,919 Bytes
685d414 97778aa 031a7f3 b8d465b 48ade8d 896ca54 310ebea db5919c 02ebd05 07cb903 5753bc2 b8d465b aa10e55 310ebea e3bea0f 5753bc2 b66d512 db5919c b66d512 02ebd05 425eec5 3c8678d db5919c e3bea0f 1668d21 e3bea0f 3c8678d 5753bc2 e3bea0f 5753bc2 db5919c 5753bc2 e3bea0f 425eec5 02ebd05 db5919c 5753bc2 02ebd05 db5919c 5753bc2 02ebd05 5753bc2 db5919c c10cafd 02ebd05 db5919c 02ebd05 db5919c aa10e55 e3bea0f 5753bc2 02ebd05 b8d465b 02ebd05 e3bea0f 02ebd05 e3bea0f 02ebd05 e3bea0f 02ebd05 e3bea0f 02ebd05 74245b5 a727789 5753bc2 e3bea0f 5753bc2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import snapshot_download, login
import logging
import os
import spaces
import warnings
from snac import SNAC
import numpy as np
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=RuntimeWarning)
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")
model = None
tokenizer = None
snac_model = None
EMOTIVE_TAGS = ["<laugh>", "<sigh>", "<gasp>", "<cry>", "<yawn>"]
@spaces.GPU()
def load_model():
global model, tokenizer, snac_model
try:
logger.info("Loading SNAC model...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(device)
logger.info("Loading Orpheus model...")
model_name = "canopylabs/orpheus-3b-0.1-ft"
hf_token = os.environ.get("HUGGINGFACE_TOKEN")
if not hf_token:
raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")
login(token=hf_token)
snapshot_download(
repo_id=model_name,
use_auth_token=hf_token,
allow_patterns=["config.json", "*.safetensors", "model.safetensors.index.json"],
ignore_patterns=["optimizer.pt", "pytorch_model.bin", "training_args.bin", "scheduler.pt", "tokenizer.*"]
)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
logger.info(f"Orpheus model and tokenizer loaded to {device}")
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
raise
def process_prompt(prompt, voice, tokenizer, device):
prompt = f"{voice}: {prompt}"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
start_token = torch.tensor([[128259]], dtype=torch.int64)
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64)
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
attention_mask = torch.ones_like(modified_input_ids)
return modified_input_ids.to(device), attention_mask.to(device)
def parse_output(generated_ids):
token_to_find = 128257
token_to_remove = 128258
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
if len(token_indices[1]) > 0:
last_occurrence_idx = token_indices[1][-1].item()
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
else:
cropped_tensor = generated_ids
processed_rows = []
for row in cropped_tensor:
masked_row = row[row != token_to_remove]
processed_rows.append(masked_row)
code_lists = []
for row in processed_rows:
row_length = row.size(0)
new_length = (row_length // 7) * 7
trimmed_row = row[:new_length]
trimmed_row = [t - 128266 for t in trimmed_row]
code_lists.append(trimmed_row)
return code_lists[0]
def redistribute_codes(code_list, snac_model):
device = next(snac_model.parameters()).device
layer_1, layer_2, layer_3 = [], [], []
for i in range((len(code_list)+1)//7):
layer_1.append(code_list[7*i])
layer_2.append(code_list[7*i+1]-4096)
layer_3.append(code_list[7*i+2]-(2*4096))
layer_3.append(code_list[7*i+3]-(3*4096))
layer_2.append(code_list[7*i+4]-(4*4096))
layer_3.append(code_list[7*i+5]-(5*4096))
layer_3.append(code_list[7*i+6]-(6*4096))
codes = [
torch.tensor(layer_1, device=device).unsqueeze(0),
torch.tensor(layer_2, device=device).unsqueeze(0),
torch.tensor(layer_3, device=device).unsqueeze(0)
]
audio_hat = snac_model.decode(codes)
return audio_hat.detach().squeeze().cpu().numpy()
@spaces.GPU()
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
if not text.strip():
return None
try:
progress(0.1, "Processing text...")
input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
progress(0.3, "Generating speech tokens...")
with torch.no_grad():
generated_ids = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
num_return_sequences=1,
eos_token_id=128258,
)
progress(0.6, "Processing speech tokens...")
code_list = parse_output(generated_ids)
progress(0.8, "Converting to audio...")
audio_samples = redistribute_codes(code_list, snac_model)
return (24000, audio_samples)
except Exception as e:
print(f"Error generating speech: {e}")
return None
with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
gr.Markdown(f"""
# 🎵 [Orpheus Text-to-Speech](https://github.com/canopyai/Orpheus-TTS)
Enter your text below and hear it converted to natural-sounding speech with the Orpheus TTS model.
## Tips for better prompts:
- Add paralinguistic elements like {", ".join(EMOTIVE_TAGS)} or `uhm` for more human-like speech.
- Longer text prompts generally work better than very short phrases
""")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="Text Input",
placeholder="Enter the text you want to convert to speech...",
lines=8
)
voice_select = gr.Dropdown(
choices=["tara", "leah", "jess", "leo", "dan", "mia", "zac", "zoe"],
value="tara",
label="Voice"
)
with gr.Accordion("Advanced Options", open=False):
temperature = gr.Slider(
minimum=0.1, maximum=1.0, value=0.6, step=0.1,
label="Temperature",
info="Higher values increase randomness in the output"
)
top_p = gr.Slider(
minimum=0.1, maximum=1.0, value=0.95, step=0.05,
label="Top-p",
info="Lower values increase determinism in the output"
)
repetition_penalty = gr.Slider(
minimum=1.0, maximum=2.0, value=1.1, step=0.1,
label="Repetition Penalty",
info="Higher values discourage repetitive patterns"
)
max_new_tokens = gr.Slider(
minimum=100, maximum=2000, value=1200, step=100,
label="Max Length",
info="Maximum length of generated audio (in tokens)"
)
with gr.Row():
submit_btn = gr.Button("Generate Speech", variant="primary")
clear_btn = gr.Button("Clear")
with gr.Column():
audio_output = gr.Audio(label="Generated Speech")
submit_btn.click(
generate_speech,
inputs=[text_input, voice_select, temperature, top_p, repetition_penalty, max_new_tokens],
outputs=audio_output
)
clear_btn.click(lambda: "", inputs=None, outputs=text_input)
if __name__ == "__main__":
try:
load_model()
demo.launch()
except Exception as e:
logger.error(f"Error launching the application: {str(e)}") |