File size: 2,354 Bytes
1dd6eaf
0d5c920
 
1dd6eaf
 
0d5c920
 
 
1dd6eaf
 
30463cc
1dd6eaf
 
 
 
0d5c920
1dd6eaf
0d5c920
1dd6eaf
 
 
 
 
 
 
 
 
 
 
 
 
0d5c920
 
1dd6eaf
 
0d5c920
 
1dd6eaf
 
0d5c920
1dd6eaf
 
 
 
 
 
 
 
 
0d5c920
1dd6eaf
0d5c920
1dd6eaf
0d5c920
 
1dd6eaf
 
0d5c920
 
1dd6eaf
 
 
 
609997a
024b978
 
1dd6eaf
 
024b978
1dd6eaf
 
 
 
 
0d5c920
 
609997a
024b978
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, random_split
from torchvision import transforms
from PIL import Image
import gradio as gr

# -------- CONFIG --------
data_dir = "D:/Dataset/face_age"
checkpoint_path = "age_prediction_model2.pth"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# -------- SIMPLE CNN MODEL --------
class SimpleCNN(nn.Module):
    def __init__(self):
        super(SimpleCNN, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 32, kernel_size=3, padding=1), nn.ReLU(),
            nn.MaxPool2d(2),  # 64x64
            nn.Conv2d(32, 64, kernel_size=3, padding=1), nn.ReLU(),
            nn.MaxPool2d(2),  # 32x32
            nn.Conv2d(64, 128, kernel_size=3, padding=1), nn.ReLU(),
            nn.MaxPool2d(2),  # 16x16
        )
        self.classifier = nn.Sequential(
            nn.Flatten(),
            nn.Linear(128 * 16 * 16, 256), nn.ReLU(),
            nn.Linear(256, 1)  # Output: age (regression)
        )

    def forward(self, x):
        x = self.features(x)
        x = self.classifier(x)
        return x

# -------- LOAD MODEL --------
model = SimpleCNN().to(device)

# Check if checkpoint exists before loading
if os.path.exists(checkpoint_path):
    model.load_state_dict(torch.load(checkpoint_path))
    model.eval()  # Set the model to evaluation mode
    print(f"Model loaded from {checkpoint_path}")
else:
    print(f"Error: Checkpoint file not found at {checkpoint_path}. Please check the path.")

# -------- PREPROCESSING --------
transform = transforms.Compose([
    transforms.Resize((128, 128)),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])

# -------- PREDICTION FUNCTION --------
def predict_age(image):
    image = transform(image).unsqueeze(0).to(device)
    with torch.no_grad():
        output = model(image)
        age = output.item()  # Convert to a single scalar
    return f"Predicted Age: {age:.2f}"



# Update the gr.Image initialization
iface = gr.Interface(
    fn=predict_age,
    inputs=gr.Image(image_size=(128, 128), image_mode='RGB', source='upload'),
    outputs="text",
    title="Age Prediction Model",
    description="Upload an image to predict the age.",
    live=True
)

iface.launch()