|
import torch |
|
import torch.nn as nn |
|
import timm |
|
import gradio as gr |
|
from torchvision import transforms |
|
from PIL import Image |
|
|
|
|
|
class_names = ['Bacteria', 'Fungi', 'Healthy', 'Nematode', 'Pest', 'Phytopthora', 'Virus'] |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model = timm.create_model('mobilenetv3_large_100', pretrained=False) |
|
model.classifier = nn.Sequential( |
|
nn.Linear(model.classifier.in_features, 512), |
|
nn.ReLU(), |
|
nn.Dropout(0.3), |
|
nn.Linear(512, len(class_names)) |
|
) |
|
model.load_state_dict(torch.load('best_model.pth', map_location=device)) |
|
model.to(device) |
|
model.eval() |
|
|
|
|
|
transform = transforms.Compose([ |
|
transforms.Resize(256), |
|
transforms.CenterCrop(224), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], |
|
[0.229, 0.224, 0.225]) |
|
]) |
|
|
|
|
|
def predict(image): |
|
image = transform(image).unsqueeze(0).to(device) |
|
with torch.no_grad(): |
|
outputs = model(image) |
|
_, predicted = torch.max(outputs, 1) |
|
confidence = torch.softmax(outputs, dim=1)[0][predicted.item()].item() |
|
return {class_names[predicted.item()]: float(confidence)} |
|
|
|
|
|
interface = gr.Interface( |
|
fn=predict, |
|
inputs=gr.Image(type="pil"), |
|
outputs=gr.Label(num_top_classes=3), |
|
title="Potato Leaf Disease Classification", |
|
description="Upload an image of a potato leaf to detect the disease type." |
|
) |
|
|
|
interface.launch() |
|
|