Spaces:
Sleeping
Sleeping
File size: 22,419 Bytes
d0ac18d 050fdc5 db0eaac d0ac18d 21711d5 d0ac18d 21711d5 d0ac18d fb27dda d0ac18d 050fdc5 d0ac18d 050fdc5 d0ac18d 050fdc5 d0ac18d 050fdc5 d0ac18d 050fdc5 d0ac18d 050fdc5 d0ac18d 050fdc5 d0ac18d 050fdc5 21711d5 050fdc5 d0ac18d 050fdc5 d0ac18d fb27dda d0ac18d fb27dda d0ac18d fb27dda 050fdc5 d0ac18d fb27dda 050fdc5 db0eaac e2b92e5 fb27dda e2b92e5 fb27dda e2b92e5 050fdc5 e2b92e5 050fdc5 fb27dda 050fdc5 e2b92e5 fb27dda 050fdc5 fb27dda d0ac18d db0eaac d0ac18d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
import warnings
import time
import os
from typing import Dict, Tuple, List
from dataclasses import dataclass
import numpy as np
import pandas as pd
from tqdm.auto import tqdm
import google.generativeai as genai
from tenacity import retry, stop_after_attempt, wait_exponential
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import gradio as gr
# Suppress warnings
warnings.filterwarnings("ignore")
@dataclass
class EvaluationConfig:
api_key: str
model_name: str = "gemini-1.5-flash"
batch_size: int = 5
class EvaluationPrompts:
@staticmethod
def get_first_check(original_prompt: str, response: str) -> str:
return f"""Оцените следующий ответ по шкале от 0 до 10:
Оригинальный запрос: {original_prompt}
Ответ: {response}
Оцените по критериям:
1. Креативность (уникальность и оригинальность ответа)
2. Разнообразие (использование разных языковых средств)
3. Релевантность (соответствие запросу)
Дайте только числовые оценки в формате:
Креативность: [число]
Разнообразие: [число]
Релевантность: [число]"""
@staticmethod
def get_second_check(original_prompt: str, response: str) -> str:
return f"""Вы — эксперт по оценке качества текстов, обладающий глубокими знаниями в области лингвистики, креативного письма и искусственного интеллекта. Ваша задача — объективно оценить представленный ответ по следующим критериям.
### **Оригинальный запрос:**
{original_prompt}
### **Ответ:**
{response}
## **Инструкция по оценке**
Оцените ответ по шкале от 0 до 10 по трем критериям:
1. **Креативность** – Насколько ответ уникален и оригинален? Есть ли неожиданные, но уместные идеи?
2. **Разнообразие** – Использует ли ответ различные стилистические приемы, примеры, аналогии, синонимы? Насколько он выразителен?
3. **Релевантность** – Насколько ответ соответствует запросу? Полностью ли он отвечает на поставленный вопрос?
### **Формат ответа:**
Выведите оценки в точном формате:
Креативность: [число]
Разнообразие: [число]
Релевантность: [число]"""
@staticmethod
def get_third_check(original_prompt: str, response: str) -> str:
return f"""Вы — эксперт по анализу текстов. Ваша задача — оценить ответ на запрос по шкале от 0 до 100 по трем критериям.
### **Оригинальный запрос:**
{original_prompt}
### **Ответ:**
{response}
## **Критерии оценки:**
1. **Креативность** – Насколько ответ уникален и оригинален? Используются ли необычные идеи и неожиданные подходы?
2. **Разнообразие** – Применяются ли разные языковые конструкции, примеры, аналогии, синонимы?
3. **Релевантность** – Насколько ответ соответствует запросу? Полностью ли он отвечает на поставленный вопрос?
Выведите оценки в точном формате:
Креативность: [число]
Разнообразие: [число]
Релевантность: [число]"""
class ResponseEvaluator:
def __init__(self, config: EvaluationConfig):
"""Initialize the evaluator with given configuration"""
self.config = config
self.model = self._setup_model()
def _setup_model(self) -> genai.GenerativeModel:
"""Set up the Gemini model"""
genai.configure(api_key=self.config.api_key)
return genai.GenerativeModel(self.config.model_name)
@retry(
stop=stop_after_attempt(5),
wait=wait_exponential(multiplier=1, min=4, max=60)
)
def evaluate_single_response(self, original_prompt: str, response: str) -> Tuple[Dict[str, float], str]:
"""Evaluate a single response using the configured model"""
evaluation_prompts = self._create_evaluation_prompt(original_prompt, response)
all_scores = []
all_texts = []
for prompt in evaluation_prompts:
try:
evaluation = self.model.generate_content(prompt)
scores = self._parse_evaluation_scores(evaluation.text)
all_scores.append(scores)
all_texts.append(evaluation.text)
except Exception as e:
print(f"Error with prompt: {str(e)}")
all_scores.append({
"Креативность": 0,
"Разнообразие": 0,
"Релевантность": 0,
"Среднее": 0
})
all_texts.append("Error in evaluation")
final_scores = {
"Креативность": np.mean([s.get("Креативность", 0) for s in all_scores]),
"Разнообразие": np.mean([s.get("Разнообразие", 0) for s in all_scores]),
"Релевантность": np.mean([s.get("Релевантность", 0) for s in all_scores])
}
final_scores["Среднее"] = np.mean(list(final_scores.values()))
return final_scores, "\n\n".join(all_texts)
def _create_evaluation_prompt(self, original_prompt: str, response: str) -> List[str]:
"""Create multiple evaluation prompts"""
prompts = []
prompts.append(EvaluationPrompts.get_first_check(original_prompt, response))
prompts.append(EvaluationPrompts.get_second_check(original_prompt, response))
prompts.append(EvaluationPrompts.get_third_check(original_prompt, response))
return prompts
def _parse_evaluation_scores(self, evaluation_text: str) -> Dict[str, float]:
"""Parse evaluation text into scores dictionary"""
scores = {}
for line in evaluation_text.strip().split('\n'):
if ':' in line:
parts = line.split(':')
if len(parts) >= 2:
metric, score_text = parts[0], ':'.join(parts[1:])
try:
score_text = score_text.strip()
score = float(''.join(c for c in score_text if c.isdigit() or c == '.'))
scores[metric.strip()] = score
except ValueError:
continue
if scores:
scores['Среднее'] = np.mean([v for k, v in scores.items() if k != 'Среднее'])
return scores
def evaluate_dataset(self, df: pd.DataFrame, prompt_col: str, answer_col: str) -> pd.DataFrame:
"""Evaluate all responses in the dataset"""
evaluations = []
eval_answers = []
total_batches = (len(df) + self.config.batch_size - 1) // self.config.batch_size
for i in range(0, len(df), self.config.batch_size):
batch = df.iloc[i:i+self.config.batch_size]
with tqdm(batch.iterrows(), total=len(batch),
desc=f"Batch {i//self.config.batch_size + 1}/{total_batches}") as pbar:
for _, row in pbar:
try:
scores, eval_text = self.evaluate_single_response(
str(row[prompt_col]),
str(row[answer_col])
)
evaluations.append(scores)
eval_answers.append(eval_text)
except Exception as e:
print(f"Error processing row {_}: {str(e)}")
evaluations.append({
"Креативность": 0,
"Разнообразие": 0,
"Релевантность": 0,
"Среднее": 0
})
eval_answers.append("Error in evaluation")
time.sleep(2)
time.sleep(10)
return self._create_evaluation_dataframe(df, evaluations, eval_answers)
def _create_evaluation_dataframe(self,
original_df: pd.DataFrame,
evaluations: List[Dict],
eval_answers: List[str]) -> pd.DataFrame:
score_df = pd.DataFrame(evaluations)
df = original_df.copy()
df['gemini_eval_answer'] = eval_answers
return pd.concat([df, score_df], axis=1)
class StabilityEvaluator:
def __init__(self, model_name='paraphrase-MiniLM-L6-v2'):
self.model = SentenceTransformer(model_name)
def calculate_similarity(self, prompts, outputs):
prompt_embeddings = self.model.encode(prompts)
output_embeddings = self.model.encode(outputs)
similarities = cosine_similarity(prompt_embeddings, output_embeddings)
stability_coefficients = np.diag(similarities)
return {
'stability_score': np.mean(stability_coefficients) * 100, # Scale to 0-100
'stability_std': np.std(stability_coefficients) * 100,
'individual_similarities': stability_coefficients
}
class BenchmarkEvaluator:
def __init__(self, gemini_api_key):
"""Initialize both evaluators"""
self.creative_evaluator = ResponseEvaluator(
EvaluationConfig(api_key=gemini_api_key)
)
self.stability_evaluator = StabilityEvaluator()
self.results_history = []
# Create results directory if it doesn't exist
os.makedirs('results', exist_ok=True)
# Load previous benchmark results if available
self.benchmark_file = 'results/benchmark_results.csv'
if os.path.exists(self.benchmark_file):
try:
self.leaderboard_df = pd.read_csv(self.benchmark_file)
except:
self.leaderboard_df = pd.DataFrame(columns=[
'model', 'creativity_score', 'stability_score',
'combined_score', 'evaluation_timestamp'
])
else:
self.leaderboard_df = pd.DataFrame(columns=[
'model', 'creativity_score', 'stability_score',
'combined_score', 'evaluation_timestamp'
])
def evaluate_model(self, df, model_name, prompt_col='rus_prompt', answer_col=None):
"""Evaluate a single model's responses"""
# Use direct answer column if provided, otherwise derive from model name
if answer_col is None:
answer_col = f"{model_name}_answers"
if answer_col not in df.columns:
raise ValueError(f"Column {answer_col} not found in dataframe")
print(f"Evaluating creativity for {model_name}...")
creative_df = self.creative_evaluator.evaluate_dataset(df, prompt_col, answer_col)
print(f"Evaluating stability for {model_name}...")
stability_results = self.stability_evaluator.calculate_similarity(
df[prompt_col].tolist(),
df[answer_col].tolist()
)
creative_score = creative_df["Среднее"].mean()
stability_score = stability_results['stability_score']
combined_score = (creative_score + stability_score) / 2
# Add timestamp
timestamp = pd.Timestamp.now().strftime('%Y-%m-%d %H:%M:%S')
results = {
'model': model_name,
'creativity_score': creative_score,
'stability_score': stability_score,
'combined_score': combined_score,
'evaluation_timestamp': timestamp,
'creative_details': {
'creativity': creative_df["Креативность"].mean(),
'diversity': creative_df["Разнообразие"].mean(),
'relevance': creative_df["Релевантность"].mean(),
},
'stability_details': stability_results
}
# Save detailed results
output_file = f'results/evaluated_responses_{model_name}_{timestamp.replace(":", "-").replace(" ", "_")}.csv'
creative_df.to_csv(output_file, index=False)
print(f"Detailed results saved to {output_file}")
# Update leaderboard
result_row = {
'model': model_name,
'creativity_score': creative_score,
'stability_score': stability_score,
'combined_score': combined_score,
'evaluation_timestamp': timestamp
}
self.leaderboard_df = pd.concat([self.leaderboard_df, pd.DataFrame([result_row])], ignore_index=True)
self.leaderboard_df.to_csv(self.benchmark_file, index=False)
self.results_history.append(results)
return results, creative_df
def evaluate_all_models(self, df, models=None, model_columns=None, prompt_col='rus_prompt'):
"""Evaluate multiple models from the dataframe"""
if models is not None and model_columns is not None:
model_mapping = dict(zip(models, model_columns))
elif models is not None:
model_mapping = {model: f"{model}_answers" for model in models}
else:
answer_cols = [col for col in df.columns if col.endswith('_answers')]
models = [col.replace('_answers', '') for col in answer_cols]
model_mapping = dict(zip(models, answer_cols))
results = []
detail_dfs = []
for model, column in model_mapping.items():
try:
model_results, detail_df = self.evaluate_model(df, model, prompt_col, column)
results.append(model_results)
detail_dfs.append(detail_df)
print(f"Completed evaluation for {model}")
except Exception as e:
print(f"Error evaluating {model}: {str(e)}")
# Create combined results DataFrame
benchmark_df = pd.DataFrame([{
'model': r['model'],
'creativity_score': r['creativity_score'],
'stability_score': r['stability_score'],
'combined_score': r['combined_score'],
'evaluation_timestamp': r['evaluation_timestamp']
} for r in results])
timestamp = pd.Timestamp.now().strftime('%Y%m%d_%H%M%S')
benchmark_df.to_csv(f'results/benchmark_results_{timestamp}.csv', index=False)
print(f"Benchmark completed. Results saved to results/benchmark_results_{timestamp}.csv")
if detail_dfs:
combined_details = pd.concat(detail_dfs)
combined_details.to_csv(f'results/detailed_evaluation_{timestamp}.csv', index=False)
print(f"Detailed evaluation saved to results/detailed_evaluation_{timestamp}.csv")
return benchmark_df, self.leaderboard_df
def get_leaderboard(self):
"""Return the current leaderboard"""
if self.leaderboard_df.empty:
return pd.DataFrame(columns=['model', 'creativity_score', 'stability_score', 'combined_score', 'evaluation_timestamp'])
# Sort by combined score (descending)
sorted_df = self.leaderboard_df.sort_values(by='combined_score', ascending=False)
return sorted_df
def create_gradio_interface():
os.makedirs('results', exist_ok=True)
state = {
'evaluator': None,
'last_results': None,
'leaderboard': None
}
# Load existing leaderboard if available
leaderboard_path = 'results/benchmark_results.csv'
if os.path.exists(leaderboard_path):
try:
state['leaderboard'] = pd.read_csv(leaderboard_path)
except:
state['leaderboard'] = pd.DataFrame(columns=['model', 'creativity_score', 'stability_score', 'combined_score', 'evaluation_timestamp'])
else:
state['leaderboard'] = pd.DataFrame(columns=['model', 'creativity_score', 'stability_score', 'combined_score', 'evaluation_timestamp'])
with gr.Blocks(title="Model Response Evaluator") as app:
gr.Markdown("# Model Response Evaluator")
gr.Markdown("Upload a CSV file with prompts and model responses to evaluate and benchmark models.")
with gr.Row():
gemini_api_key = gr.Textbox(label="Gemini API Key", type="password")
with gr.Row():
csv_file = gr.File(label="Upload CSV with responses")
prompt_col = gr.Textbox(label="Prompt Column Name", value="rus_prompt")
with gr.Row():
model_input_method = gr.Radio(
choices=["Auto-detect from columns", "Specify models and columns"],
label="Model Input Method",
value="Auto-detect from columns"
)
with gr.Row(visible=False) as model_config_row:
models_input = gr.Textbox(label="Model names (comma-separated)")
answer_cols_input = gr.Textbox(label="Answer column names (comma-separated, matching model order)")
evaluate_btn = gr.Button("Run Benchmark")
with gr.Tabs():
with gr.Tab("Current Results"):
current_results = gr.DataFrame(label="Current Benchmark Results")
download_btn = gr.Button("Download Results CSV")
current_results_file = gr.File(label="Download Results")
with gr.Tab("Leaderboard"):
leaderboard_table = gr.DataFrame(value=state['leaderboard'], label="Model Leaderboard")
refresh_btn = gr.Button("Refresh Leaderboard")
def toggle_model_input(choice):
return gr.Row(visible=(choice == "Specify models and columns"))
model_input_method.change(toggle_model_input, model_input_method, model_config_row)
def evaluate_batch(api_key, file, prompt_column, input_method, models_text, answer_cols_text):
try:
if not api_key:
return None, None, None
# Load the CSV file
file_path = file.name
df = pd.read_csv(file_path)
# Initialize evaluator
state['evaluator'] = BenchmarkEvaluator(api_key)
# Process model names and columns if provided
if input_method == "Specify models and columns":
if not models_text.strip() or not answer_cols_text.strip():
return None, None, None
models = [m.strip() for m in models_text.split(',')]
answer_cols = [c.strip() for c in answer_cols_text.split(',')]
if len(models) != len(answer_cols):
return pd.DataFrame({'Error': ['Number of models and answer columns must match']}), state['leaderboard'], None
results_df, leaderboard_df = state['evaluator'].evaluate_all_models(
df, models=models, model_columns=answer_cols, prompt_col=prompt_column
)
else:
# Auto-detect mode
results_df, leaderboard_df = state['evaluator'].evaluate_all_models(
df, prompt_col=prompt_column
)
timestamp = pd.Timestamp.now().strftime('%Y%m%d_%H%M%S')
results_path = f'results/benchmark_results_{timestamp}.csv'
results_df.to_csv(results_path, index=False)
# Update state
state['last_results'] = results_df
state['leaderboard'] = leaderboard_df
return results_df, leaderboard_df, results_path
except Exception as e:
error_df = pd.DataFrame({'Error': [str(e)]})
return error_df, state['leaderboard'], None
def download_results():
if state['last_results'] is not None:
timestamp = pd.Timestamp.now().strftime('%Y%m%d_%H%M%S')
file_path = f'results/benchmark_download_{timestamp}.csv'
state['last_results'].to_csv(file_path, index=False)
return file_path
return None
def refresh_leaderboard():
# Reload leaderboard from file
if os.path.exists('results/benchmark_results.csv'):
state['leaderboard'] = pd.read_csv('results/benchmark_results.csv')
return state['leaderboard']
evaluate_btn.click(
evaluate_batch,
inputs=[gemini_api_key, csv_file, prompt_col, model_input_method, models_input, answer_cols_input],
outputs=[current_results, leaderboard_table, current_results_file]
)
download_btn.click(download_results, inputs=[], outputs=[current_results_file])
refresh_btn.click(refresh_leaderboard, inputs=[], outputs=[leaderboard_table])
# Initialize the leaderboard
leaderboard_table.value = state['leaderboard']
return app
def main():
app = create_gradio_interface()
app.launch(share=True)
if __name__ == "__main__":
main() |