Spaces:
Sleeping
Sleeping
import subprocess | |
import gradio as gr # Add this import statement | |
subprocess.run(["python", "-m", "pip", "install", "--upgrade", "pip"]) | |
subprocess.run(["pip", "install", "gradio", "--upgrade"]) | |
subprocess.run(["pip", "install", "datasets"]) | |
subprocess.run(["pip", "install", "transformers"]) | |
subprocess.run(["pip", "install", "librosa", "soundfile"]) | |
subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"]) | |
from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
from datasets import load_dataset | |
# Define the transcribe_audio function | |
def transcribe_audio(audio): | |
input_features = processor(audio, return_tensors="pt").input_features | |
predicted_ids = model.generate(input_features) | |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) | |
return transcription[0] | |
# load model and processor | |
processor = WhisperProcessor.from_pretrained("openai/whisper-small") | |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") | |
forced_decoder_ids = processor.get_decoder_prompt_ids(language="italian", task="transcribe") | |
# load dummy dataset and read audio files | |
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
sample = ds[0]["audio"] | |
# Create Gradio interface | |
audio_input = gr.Audio() | |
gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch() | |