File size: 1,464 Bytes
88dc3ba
d16271b
88dc3ba
335cb84
eb4d23a
88dc3ba
 
c19f1d0
88dc3ba
d16271b
88dc3ba
27f3b82
88dc3ba
d16271b
 
 
 
 
 
 
27f3b82
 
 
88dc3ba
 
27f3b82
 
 
88dc3ba
 
7a0b87f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import subprocess
import gradio as gr  # Add this import statement

subprocess.run(["python", "-m", "pip", "install", "--upgrade", "pip"])
subprocess.run(["pip", "install", "gradio", "--upgrade"])
subprocess.run(["pip", "install", "datasets"])
subprocess.run(["pip", "install", "transformers"])
subprocess.run(["pip", "install", "librosa", "soundfile"])
subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"])

from transformers import WhisperProcessor, WhisperForConditionalGeneration
from datasets import load_dataset

# Define the transcribe_audio function
def transcribe_audio(audio):
    input_features = processor(audio, return_tensors="pt").input_features 
    predicted_ids = model.generate(input_features)
    transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
    return transcription[0]

# load model and processor
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
forced_decoder_ids = processor.get_decoder_prompt_ids(language="italian", task="transcribe")

# load dummy dataset and read audio files
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
sample = ds[0]["audio"]

# Create Gradio interface
audio_input = gr.Audio()
gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch()