Spaces:
Sleeping
Sleeping
import subprocess | |
import gradio as gr # Add this import statement | |
subprocess.run(["python", "-m", "pip", "install", "--upgrade", "pip"]) | |
subprocess.run(["pip", "install", "gradio", "--upgrade"]) | |
subprocess.run(["pip", "install", "datasets"]) | |
subprocess.run(["pip", "install", "transformers"]) | |
subprocess.run(["pip", "install", "librosa", "soundfile"]) | |
subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"]) | |
import gradio as gr | |
from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
import numpy as np | |
# Load model and processor | |
processor = WhisperProcessor.from_pretrained("openai/whisper-small") | |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") | |
forced_decoder_ids = processor.get_decoder_prompt_ids(language="italian", task="transcribe") | |
def transcribe_audio(audio): | |
# Assuming sampling_rate is known | |
sampling_rate = 16000 # Change this to the actual sampling rate of your audio | |
# Ensure to pass the sampling_rate parameter | |
input_features = processor(audio, sampling_rate=sampling_rate, return_tensors="pt").input_features | |
predicted_ids = model.generate(input_features) | |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) | |
return transcription[0] | |
# Create Gradio interface | |
audio_input = gr.Audio() | |
gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch() | |