File size: 1,470 Bytes
88dc3ba
d16271b
88dc3ba
335cb84
eb4d23a
88dc3ba
 
c19f1d0
88dc3ba
d16271b
ce7e2d6
88dc3ba
ce7e2d6
88dc3ba
ce7e2d6
27f3b82
 
88dc3ba
 
ce7e2d6
 
 
 
 
 
 
 
 
88dc3ba
 
7a0b87f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import subprocess
import gradio as gr  # Add this import statement

subprocess.run(["python", "-m", "pip", "install", "--upgrade", "pip"])
subprocess.run(["pip", "install", "gradio", "--upgrade"])
subprocess.run(["pip", "install", "datasets"])
subprocess.run(["pip", "install", "transformers"])
subprocess.run(["pip", "install", "librosa", "soundfile"])
subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"])

import gradio as gr
from transformers import WhisperProcessor, WhisperForConditionalGeneration
import numpy as np

# Load model and processor
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
forced_decoder_ids = processor.get_decoder_prompt_ids(language="italian", task="transcribe")

def transcribe_audio(audio):
    # Assuming sampling_rate is known
    sampling_rate = 16000  # Change this to the actual sampling rate of your audio

    # Ensure to pass the sampling_rate parameter
    input_features = processor(audio, sampling_rate=sampling_rate, return_tensors="pt").input_features
    predicted_ids = model.generate(input_features)
    transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
    return transcription[0]

# Create Gradio interface
audio_input = gr.Audio()
gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch()