Spaces:
Running
on
T4
Running
on
T4
File size: 17,447 Bytes
fc8f543 3a282ff fc8f543 76a84b9 fc8f543 8691d5d 0fb9496 fce1568 8691d5d 0fb9496 fce1568 fc8f543 8623916 fc8f543 fce1568 fc8f543 fce1568 fc8f543 fce1568 fc8f543 fce1568 fc8f543 fce1568 fc8f543 fce1568 5e90f01 fc8f543 0fb9496 fc8f543 fce1568 5e90f01 fc8f543 0fb9496 fce1568 fc8f543 0fb9496 fc8f543 fce1568 fc8f543 0fb9496 fc8f543 0fb9496 fc8f543 fce1568 fc8f543 0fb9496 fce1568 fc8f543 0fb9496 fc8f543 0fb9496 fc8f543 fce1568 fc8f543 fce1568 fc8f543 fce1568 fc8f543 fce1568 fc8f543 fce1568 fc8f543 fce1568 fc8f543 9568aba 577322a fc8f543 fce1568 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
import io
import pandas as pd
import torch
import plotly.graph_objects as go
from PIL import Image
import numpy as np
import gradio as gr
import os
from plotly.subplots import make_subplots
from tirex import load_model, ForecastModel
# ----------------------------
# Helper functions (logic mostly unchanged)
# ----------------------------
torch.manual_seed(42)
model: ForecastModel = load_model("NX-AI/TiRex",device='cuda')
def model_forecast(input_data, forecast_length=256, file_name=None):
if os.path.basename(file_name) == "loop.csv" and forecast_length==256:
_forecast_tensor = torch.load("data/loop_forecast_256.pt")
return _forecast_tensor
elif os.path.basename(file_name) == "ett2.csv" and forecast_length==256:
_forecast_tensor = torch.load("data/ett2_forecast_256.pt")
return _forecast_tensor
elif os.path.basename(file_name) == "air_passengers.csv"and forecast_length==24:
_forecast_tensor = torch.load("data/air_passengers_forecast_24.pt")
return _forecast_tensor
else:
forecast = model.forecast(context=input_data, prediction_length=forecast_length)
return forecast[0]
def load_table(file_path):
ext = file_path.split(".")[-1].lower()
if ext == "csv":
return pd.read_csv(file_path)
elif ext in ("xls", "xlsx"):
return pd.read_excel(file_path)
elif ext == "parquet":
return pd.read_parquet(file_path)
else:
raise ValueError("Unsupported format. Use CSV, XLS, XLSX, or PARQUET.")
def extract_names_and_update(file, preset_filename, transpose):
try:
# Determine which file to use and get default forecast length
if file is not None:
df = load_table(file.name)
default_length = get_default_forecast_length(file.name)
else:
if not preset_filename or preset_filename == "-- No preset selected --":
return gr.update(choices=[], value=[]), [], gr.update(value=256)
df = load_table(preset_filename)
default_length = get_default_forecast_length(preset_filename)
# if user wants to transpose, do it here
if transpose:
df = df.T
if df.shape[1] > 0 and df.iloc[:, 0].dtype == object and not df.iloc[:, 0].str.isnumeric().all():
names = df.iloc[:, 0].tolist()
else:
names = [f"Series {i}" for i in range(len(df))]
return (
gr.update(choices=names, value=names),
names,
gr.update(value=default_length)
)
except Exception:
return gr.update(choices=[], value=[]), [], gr.update(value=256)
def filter_names(search_term, all_names):
if not all_names:
return gr.update(choices=[], value=[])
if not search_term:
return gr.update(choices=all_names, value=all_names)
lower = search_term.lower()
filtered = [n for n in all_names if lower in str(n).lower()]
return gr.update(choices=filtered, value=filtered)
def check_all(names_list):
return gr.update(value=names_list)
def uncheck_all(_):
return gr.update(value=[])
def get_default_forecast_length(file_path):
"""Get default forecast length based on filename"""
if file_path is None:
return 64
filename = os.path.basename(file_path)
if filename == "loop.csv" or filename == "ett2.csv":
return 256
elif filename == "air_passengers.csv":
return 24
else:
return 64
def display_filtered_forecast(file, preset_filename, selected_names, forecast_length, transpose):
try:
# 1) If no file or preset selected, show an error
if file is None and (preset_filename is None or preset_filename == "-- No preset selected --"):
return None, "No file selected."
# 2) Load DataFrame and remember which filename to pass to model_forecast
if file is not None:
df = load_table(file.name)
file_name = file.name
else:
df = load_table(preset_filename)
file_name = preset_filename
if transpose:
df = df.T
# 3) Determine whether first column is names or numeric
if (
df.shape[1] > 0
and df.iloc[:, 0].dtype == object
and not df.iloc[:, 0].str.isnumeric().all()
):
if df.shape[1]>2048 and file is not None:
df = pd.concat([ df.iloc[:, [0]], df.iloc[:, -2048:] ], axis=1)
gr.Info("Maximum of 2048 steps per timeseries (row) is allowed, hence last 2048 kept. ℹ️", duration=5)
all_names = df.iloc[:, 0].tolist()
data_only_full = df.iloc[:, 1:].astype(float)
else:
if df.shape[1]>2048 and file is not None:
df = df.iloc[:, -2048:]
gr.Info("Maximum of 2048 steps per timeseries (row) is allowed, hence last 2048 kept. ℹ️", duration=5)
all_names = [f"Series {i}" for i in range(len(df))]
data_only_full = df.astype(float)
data_only = data_only_full
# 4) Build mask from selected_names
mask = [name in selected_names for name in all_names]
if not any(mask):
return None, "No timeseries chosen to plot."
filtered_data = data_only.iloc[mask, :].values # shape = (n_selected, seq_len)
filtered_data_only_full = data_only_full.iloc[mask, :].values # ** Added to show prediction accuracy
filtered_names = [all_names[i] for i, m in enumerate(mask) if m]
n_selected = filtered_data.shape[0]
if n_selected>30:
raise gr.Error("Maximum of 30 timeseries (rows) is possible to choose", duration=5)
# 5) First call model_forecast on all series, then select only the masked rows
full_data = data_only.values # shape = (n_all, seq_len)
if file is not None:
full_out = model_forecast(full_data, forecast_length=forecast_length, file_name=file_name)
else:
if preset_filename=='data/ett2.csv' or preset_filename=="data/loop.csv":
full_out = model_forecast(full_data[:, :2048], forecast_length=forecast_length, file_name=file_name)
elif preset_filename=="data/air_passengers.csv":
full_out = model_forecast(full_data[:, :132], forecast_length=forecast_length, file_name=file_name)
# Now pick only the rows we actually filtered
out = full_out[mask, :, :] # shape = (n_selected, pred_len, n_q)
inp = torch.tensor(filtered_data)
inp_full = torch.tensor(filtered_data_only_full) # ** Added to show prediction accuracy
# 6) Create one subplot per selected series, with vertical spacing
subplot_height_px = 350 # px per subplot
n_selected = len(filtered_names)
fig = make_subplots(
rows=n_selected,
cols=1,
shared_xaxes=False,
subplot_titles=filtered_names,
row_heights=[1] * n_selected, # all rows equal height
)
fig.update_layout(
height=subplot_height_px * n_selected,
template="plotly_dark",
margin=dict(t=50, b=50)
)
for idx in range(n_selected):
ts = inp[idx].numpy().tolist()
ts_full = inp_full[idx].numpy().tolist()
qp = out[idx].numpy()
series_name = filtered_names[idx]
pred_len = qp.shape[0]
if file is not None:
x_pred = list(range(len(ts), len(ts) + pred_len))
else:
if preset_filename=='data/ett2.csv' or preset_filename=="data/loop.csv":
x_pred = list(range(2048, 2048 + pred_len))
elif preset_filename=="data/air_passengers.csv":
x_pred = list(range(132, 132 + pred_len))
# a) plot historical data (blue line)
x_hist = list(range(len(ts_full)))
if x_pred[-1]<x_hist[-1]:
diff = len(x_hist)-len(x_hist[:x_pred[-1]])
x_hist = x_hist[:x_pred[-1]]
ts_full = ts_full[:-diff]
fig.add_trace(
go.Scatter(
x=x_hist,
y=ts_full,
mode="lines",
name=f"{series_name} – Given Data",
line=dict(color="blue", width=2),
showlegend=False
),
row=idx + 1, col=1
)
# b) compute forecast indices
lower_q = qp[:, 0]
upper_q = qp[:, -1]
n_q = qp.shape[1]
median_idx = n_q // 2
median_q = qp[:, median_idx]
# c) lower‐bound (invisible)
fig.add_trace(
go.Scatter(
x=x_pred,
y=lower_q,
mode="lines",
line=dict(color="rgba(0,0,0,0)", width=0),
name=f"{series_name} – 10% Quantile",
hovertemplate="10% Quantile: %{y:.2f}<extra></extra>",
showlegend=False
),
row=idx + 1, col=1
)
# d) upper‐bound (shaded area)
fig.add_trace(
go.Scatter(
x=x_pred,
y=upper_q,
mode="lines",
line=dict(color="rgba(0,0,0,0)", width=0),
fill="tonexty",
fillcolor="rgba(128,128,128,0.3)",
name=f"{series_name} – 90% Quantile",
hovertemplate="90% Quantile: %{y:.2f}<extra></extra>",
showlegend=False
),
row=idx + 1, col=1
)
# e) median forecast (orange line)
fig.add_trace(
go.Scatter(
x=x_pred,
y=median_q,
mode="lines",
name=f"{series_name} – Median Forecast",
line=dict(color="orange", width=2),
hovertemplate="Median: %{y:.2f}<extra></extra>",
showlegend=False
),
row=idx + 1, col=1
)
# f) label axes for each subplot
fig.update_xaxes(title_text="Time", row=idx + 1, col=1)
fig.update_yaxes(title_text="Value", row=idx + 1, col=1)
# 7) Global layout tweaks
fig.update_layout(
template="plotly_dark",
height=300 * n_selected, # 300px per subplot
title=dict(
text="Forecasts for Selected Timeseries",
x=0.5,
font=dict(size=20, family="Arial", color="white")
),
hovermode="x unified",
margin=dict(t=120, b=40, l=60, r=40),
showlegend=False
)
return fig, ""
except gr.Error as e:
raise gr.Error(e, duration=5)
except Exception as e:
return None, f"Error: {str(e)}"
# ----------------------------
# Gradio layout: two columns + instructions
# ----------------------------
with gr.Blocks(fill_width=True,theme=gr.themes.Ocean()) as demo:
gr.Markdown("# 📈 TiRex - timeseries forecasting 📊")
gr.Markdown("Upload data or choose a preset, filter by name, then click Plot.")
with gr.Row():
# Left column: controls
with gr.Column(scale=1):
gr.Markdown("## Data Selection")
file_input = gr.File(
label="Upload CSV / XLSX / PARQUET",
file_types=[".csv", ".xls", ".xlsx", ".parquet"]
)
preset_choices = ["-- No preset selected --", "data/loop.csv", "data/air_passengers.csv", 'data/ett2.csv']
preset_dropdown = gr.Dropdown(
label="Or choose a preset:",
choices=preset_choices,
value="-- No preset selected --"
)
gr.Markdown("## Forecast Length Setting")
forecast_length_slider = gr.Slider(
minimum=1,
maximum=512,
value=64,
step=1,
label="Forecast Length (Steps)",
info="Choose how many future steps to forecast."
)
gr.Markdown("## Transpose data")
transpose_switch = gr.Checkbox(
label="Transpose data (Click if your columns are timeseries)",
value=False
)
gr.Markdown("## Search / Filter")
search_box = gr.Textbox(placeholder="Type to filter (e.g. 'AMZN')")
filter_checkbox = gr.CheckboxGroup(
choices=[], value=[], label="Select which timeseries to show"
)
with gr.Row():
check_all_btn = gr.Button("✅ Check All")
uncheck_all_btn = gr.Button("❎ Uncheck All")
plot_button = gr.Button("▶️ Plot Forecasts")
errbox = gr.Textbox(label="Error Message", interactive=False)
with gr.Row():
gr.Image("static/nxai_logo.png", width=150, show_label=False, container=False)
gr.Image("static/tirex.jpeg", width=150, show_label=False, container=False)
with gr.Column(scale=5):
gr.Markdown("## Forecast Plot")
plot_output = gr.Plot()
# Instruction text below plot
gr.Markdown("## Instructions")
gr.Markdown(
"""
**How to format your data:**
- Your file must be a table (CSV, XLS, XLSX, or Parquet).
- **One row per timeseries.** Each row is treated as a separate series.
- If you want to **name** each series, put the name as the first value in **every** row:
- Example (CSV):
`AAPL, 120.5, 121.0, 119.8, ...`
`AMZN, 3300.0, 3310.5, 3295.2, ...`
- In that case, the first column is not numeric, so it will be used as the series name.
- If you do **not** want named series, simply leave out the first column entirely and have all values numeric:
- Example:
`120.5, 121.0, 119.8, ...`
`3300.0, 3310.5, 3295.2, ...`
- Then every row will be auto-named “Series 0, Series 1, …” in order.
- **Consistency rule:** Either all rows have a non-numeric first entry for the name, or none do. Do not mix.
- The rest of the columns (after the optional name) must be numeric data points for that series.
- You can filter by typing in the search box. Then check or uncheck individual names before plotting.
- Use “Check All” / “Uncheck All” to quickly select or deselect every series.
- Finally, click **Plot Forecasts** to view the quantile forecast for each selected series (for 64 steps ahead).
"""
)
gr.Markdown("## Citation")
# make citation as code block
gr.Markdown(
"""
If you use TiRex in your research, please cite our work:
```
@article{auerTiRexZeroShotForecasting2025,
title = {{{TiRex}}: {{Zero-Shot Forecasting Across Long}} and {{Short Horizons}} with {{Enhanced In-Context Learning}}},
author = {Auer, Andreas and Podest, Patrick and Klotz, Daniel and B{\"o}ck, Sebastian and Klambauer, G{\"u}nter and Hochreiter, Sepp},
journal = {ArXiv},
volume = {2505.23719},
year = {2025}
}
```
"""
)
names_state = gr.State([])
file_input.change(
fn=extract_names_and_update,
inputs=[file_input, preset_dropdown, transpose_switch],
outputs=[filter_checkbox, names_state, forecast_length_slider]
)
preset_dropdown.change(
fn=extract_names_and_update,
inputs=[file_input, preset_dropdown, transpose_switch],
outputs=[filter_checkbox, names_state, forecast_length_slider]
)
# When search term changes, filter names
search_box.change(
fn=filter_names,
inputs=[search_box, names_state],
outputs=[filter_checkbox]
)
transpose_switch.change(
fn=extract_names_and_update,
inputs=[file_input, preset_dropdown, transpose_switch],
outputs=[filter_checkbox, names_state, forecast_length_slider]
)
# Check All / Uncheck All
check_all_btn.click(fn=check_all, inputs=names_state, outputs=filter_checkbox)
uncheck_all_btn.click(fn=uncheck_all, inputs=names_state, outputs=filter_checkbox)
# Plot button
plot_button.click(
fn=display_filtered_forecast,
inputs=[file_input, preset_dropdown, filter_checkbox, forecast_length_slider, transpose_switch],
outputs=[plot_output, errbox]
)
demo.launch(server_name="0.0.0.0", server_port=7860)
'''
gradio app.py
ssh -L 7860:localhost:7860 nikita_blago@oracle-gpu-controller -t \
ssh -L 7860:localhost:7860 compute-permanent-node-303
''' |