File size: 7,795 Bytes
9b13ff2
22a5a1b
c0897d7
4126bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0897d7
4126bd5
 
c0897d7
 
4126bd5
c0897d7
 
4126bd5
c0897d7
4126bd5
c0897d7
4126bd5
 
22a5a1b
4126bd5
9b13ff2
4126bd5
 
 
 
 
 
22a5a1b
4126bd5
 
c0897d7
4126bd5
 
 
 
 
 
 
 
 
9b13ff2
4126bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22a5a1b
 
4126bd5
 
 
 
 
 
 
 
 
 
22a5a1b
4126bd5
 
22a5a1b
4126bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22a5a1b
4126bd5
 
 
 
22a5a1b
4126bd5
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import streamlit as st
import difflib
import requests
import datetime

# --- CONFIG ---
# Place your API keys here or use Streamlit secrets
GROQ_API_KEY = st.secrets.get('GROQ_API_KEY', 'YOUR_GROQ_API_KEY')
BLACKBOX_API_KEY = st.secrets.get('BLACKBOX_API_KEY', 'YOUR_BLACKBOX_API_KEY')

PROGRAMMING_LANGUAGES = ["Python", "JavaScript", "TypeScript", "Java", "C++", "C#"]
SKILL_LEVELS = ["Beginner", "Intermediate", "Expert"]
USER_ROLES = ["Student", "Frontend Developer", "Backend Developer", "Data Scientist"]
EXPLANATION_LANGUAGES = ["English", "Spanish", "Chinese", "Urdu"]
EXAMPLE_QUESTIONS = [
    "What does this function do?",
    "How can I optimize this code?",
    "What are the potential bugs in this code?",
    "How does this algorithm work?",
    "What design patterns are used here?",
    "How can I make this code more readable?"
]

# --- API CALLS ---
def call_groq_api(prompt, model="llama3-70b-8192"):
    headers = {"Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json"}
    data = {"model": model, "messages": [{"role": "user", "content": prompt}]}
    response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=data, headers=headers)
    if response.status_code == 200:
        return response.json()['choices'][0]['message']['content']
    else:
        return f"[Groq API Error] {response.text}"

def call_blackbox_agent(prompt):
    url = "https://api.blackboxai.dev/chat"
    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {BLACKBOX_API_KEY}"
    }
    data = {
        "message": prompt
    }
    response = requests.post(url, headers=headers, json=data)
    if response.status_code == 200:
        # Adjust this if the response structure is different
        return response.json().get("response", response.json())
    else:
        return f"[Blackbox.ai API Error] {response.status_code}: {response.text}"

# --- UTILS ---
def code_matches_language(code, language):
    # Simple heuristic, can be improved
    if language.lower() in code.lower():
        return True
    return True  # For demo, always True

def calculate_code_complexity(code):
    # Dummy complexity metric
    lines = code.count('\n') + 1
    return f"{lines} lines"

def get_inline_diff(original, modified):
    diff = difflib.unified_diff(
        original.splitlines(),
        modified.splitlines(),
        lineterm='',
        fromfile='Original',
        tofile='Refactored'
    )
    return '\n'.join(diff)

# --- STREAMLIT APP ---
st.set_page_config(page_title="AI Workflow App", layout="wide")
st.title("AI Assistant with Workflow (Streamlit Edition)")

# Navigation
page = st.sidebar.radio("Navigate", ["Home", "AI Workflow", "Semantic Search"])

if page == "Home":
    st.header("Welcome to the AI Assistant!")
    st.markdown("""
    - **Full AI Workflow:** Complete code analysis pipeline with explanation, refactoring, review, and testing (powered by Groq/Blackbox)
    - **Semantic Search:** Ask natural language questions about your code and get intelligent answers
    """)
    st.info("Select a feature from the sidebar to get started.")

elif page == "AI Workflow":
    st.header("Full AI Workflow")
    code_input = st.text_area("Paste your code here", height=200)
    uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"])
    if uploaded_file:
        code_input = uploaded_file.read().decode("utf-8")
        st.text_area("File content", code_input, height=200, key="file_content")
    col1, col2, col3, col4 = st.columns(4)
    with col1:
        programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES)
    with col2:
        skill_level = st.selectbox("Skill Level", SKILL_LEVELS)
    with col3:
        user_role = st.selectbox("Your Role", USER_ROLES)
    with col4:
        explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES)
    if code_input:
        st.caption(f"Complexity: {calculate_code_complexity(code_input)}")
    if st.button("Run Workflow", type="primary"):
        if not code_input.strip():
            st.error("Please paste or upload your code.")
        elif not code_matches_language(code_input, programming_language):
            st.error(f"Language mismatch. Please check your code and language selection.")
        else:
            with st.spinner("Running AI Workflow..."):
                # Simulate workflow steps
                steps = [
                    ("Explain", call_groq_api(f"Explain this {programming_language} code for a {skill_level} {user_role} in {explanation_language}:\n{code_input}")),
                    ("Refactor", call_blackbox_agent(f"Refactor this {programming_language} code: {code_input}")),
                    ("Review", call_groq_api(f"Review this {programming_language} code for errors and improvements: {code_input}")),
                    ("ErrorDetection", call_groq_api(f"Find bugs in this {programming_language} code: {code_input}")),
                    ("TestGeneration", call_groq_api(f"Generate tests for this {programming_language} code: {code_input}")),
                ]
                timeline = []
                for step, output in steps:
                    timeline.append({"step": step, "output": output})
                st.success("Workflow complete!")
                for t in timeline:
                    st.subheader(t["step"])
                    st.write(t["output"])
                # Show code diff (Original vs Refactored)
                st.subheader("Code Diff (Original vs Refactored)")
                refactored_code = steps[1][1]  # Blackbox agent output
                st.code(get_inline_diff(code_input, refactored_code), language=programming_language.lower())
                # Download report
                report = f"AI Workflow Report\nGenerated on: {datetime.datetime.now()}\nLanguage: {programming_language}\nSkill Level: {skill_level}\nRole: {user_role}\n\n"
                for t in timeline:
                    report += f"## {t['step']}\n{t['output']}\n\n---\n\n"
                st.download_button("Download Report", report, file_name="ai_workflow_report.txt")

elif page == "Semantic Search":
    st.header("Semantic Search")
    code_input = st.text_area("Paste your code here", height=200, key="sem_code")
    uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"], key="sem_file")
    if uploaded_file:
        code_input = uploaded_file.read().decode("utf-8")
        st.text_area("File content", code_input, height=200, key="sem_file_content")
    col1, col2, col3, col4 = st.columns(4)
    with col1:
        programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES, key="sem_lang")
    with col2:
        skill_level = st.selectbox("Skill Level", SKILL_LEVELS, key="sem_skill")
    with col3:
        user_role = st.selectbox("Your Role", USER_ROLES, key="sem_role")
    with col4:
        explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES, key="sem_expl")
    question = st.text_input("Ask a question about your code")
    st.caption("Example questions:")
    st.write(", ".join(EXAMPLE_QUESTIONS))
    if st.button("Run Semantic Search"):
        if not code_input.strip() or not question.strip():
            st.error("Both code and question are required.")
        elif not code_matches_language(code_input, programming_language):
            st.error(f"Language mismatch. Please check your code and language selection.")
        else:
            with st.spinner("Running Semantic Search..."):
                answer = call_groq_api(f"{question}\n\nCode:\n{code_input}")
                st.success("Answer:")
                st.write(answer)