File size: 17,095 Bytes
9b13ff2
22a5a1b
 
 
c0897d7
 
8b44e94
c0897d7
 
 
 
8b44e94
c0897d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b44e94
22a5a1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0897d7
22a5a1b
 
 
 
 
 
 
 
 
8b44e94
22a5a1b
 
 
 
 
 
 
 
 
 
c0897d7
22a5a1b
c0897d7
 
 
22a5a1b
 
c0897d7
 
 
9b13ff2
22a5a1b
 
 
c0897d7
22a5a1b
c0897d7
 
 
22a5a1b
 
 
 
 
 
 
 
c0897d7
22a5a1b
c0897d7
22a5a1b
 
c0897d7
22a5a1b
 
 
 
c0897d7
22a5a1b
c0897d7
 
22a5a1b
 
 
 
 
c0897d7
22a5a1b
 
 
 
 
 
 
 
 
 
 
c0897d7
22a5a1b
c0897d7
 
22a5a1b
 
 
 
 
 
 
 
 
 
 
c0897d7
22a5a1b
c0897d7
 
22a5a1b
 
 
 
 
 
 
 
 
 
 
 
8b44e94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22a5a1b
c0897d7
22a5a1b
 
 
 
 
8b44e94
22a5a1b
 
 
 
 
c0897d7
 
22a5a1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b44e94
c0897d7
22a5a1b
 
9b13ff2
22a5a1b
 
 
 
 
9b13ff2
 
22a5a1b
 
 
 
 
 
 
 
c0897d7
 
22a5a1b
c0897d7
 
22a5a1b
 
 
 
 
 
 
 
 
 
c0897d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22a5a1b
 
 
 
 
 
 
 
 
 
 
 
 
9b13ff2
22a5a1b
 
 
9b13ff2
22a5a1b
 
9b13ff2
22a5a1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b13ff2
22a5a1b
 
c0897d7
22a5a1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0897d7
22a5a1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import streamlit as st
import difflib
import re
import hashlib
import requests
import os

# --- Blackbox AI Agent Key (read from environment variable) ---
BLACKBOX_API_KEY = os.environ.get("BLACKBOX_API_KEY")
if not BLACKBOX_API_KEY:
    st.error("❌ Please set your BLACKBOX_API_KEY environment variable.")
    st.stop()
BLACKBOX_API_URL = "https://api.blackbox.ai/v1/chat/completions"

def blackbox_api_call(prompt):
    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {BLACKBOX_API_KEY}",
    }
    data = {
        "model": "gpt-4",
        "messages": [
            {"role": "user", "content": prompt}
        ],
        "max_tokens": 2048,
        "temperature": 0.7
    }
    response = requests.post(BLACKBOX_API_URL, headers=headers, json=data)
    if response.status_code == 200:
        result = response.json()
        return result["choices"][0]["message"]["content"]
    else:
        return f"[Blackbox API Error {response.status_code}]: {response.text}"

# --- Cache for embeddings ---
embedding_cache = {}

def get_embedding(text):
    key = hashlib.sha256(text.encode()).hexdigest()
    if key in embedding_cache:
        return embedding_cache[key]
    embedding = [ord(c) % 100 / 100 for c in text[:512]]
    embedding_cache[key] = embedding
    return embedding

def cosine_similarity(vec1, vec2):
    dot = sum(a*b for a,b in zip(vec1, vec2))
    norm1 = sum(a*a for a in vec1) ** 0.5
    norm2 = sum(b*b for b in vec2) ** 0.5
    return dot / (norm1 * norm2 + 1e-8)

def split_code_into_chunks(code, lang):
    if lang.lower() == "python":
        pattern = r'(def\s+\w+\(.*?\):|class\s+\w+\(?.*?\)?:)'
        splits = re.split(pattern, code)
        chunks = []
        for i in range(1, len(splits), 2):
            header = splits[i]
            body = splits[i+1] if (i+1) < len(splits) else ""
            chunks.append(header + body)
        return chunks if chunks else [code]
    else:
        return [code]

def semantic_search_improved(code, question, lang, skill, role, explain_lang):
    chunks = split_code_into_chunks(code, lang)
    question_emb = get_embedding(question)
    scored_chunks = []
    for chunk in chunks:
        emb = get_embedding(chunk)
        score = cosine_similarity(question_emb, emb)
        scored_chunks.append((score, chunk))
    scored_chunks.sort(key=lambda x: x[0], reverse=True)
    top_chunks = [c for _, c in scored_chunks[:3]]
    combined_code = "\n\n".join(top_chunks)
    prompt = (
        f"You are a friendly and insightful {lang} expert helping a {skill} {role}.\n"
        f"Based on these relevant code snippets:\n{combined_code}\n"
        f"Answer this question in {explain_lang}:\n{question}\n"
        f"Explain which parts handle the question and how to modify them if needed."
    )
    answer = blackbox_api_call(prompt)
    add_to_blackbox_history(prompt, answer, "semantic_search")
    return answer

def error_detection_and_fixes(refactored_code, lang, skill, role, explain_lang):
    prompt = (
        f"You are a senior {lang} developer. Analyze this code for bugs, security flaws, "
        f"and performance issues. Suggest fixes with explanations in {explain_lang}:\n\n{refactored_code}"
    )
    answer = blackbox_api_call(prompt)
    add_to_blackbox_history(prompt, answer, "workflow")
    return answer

def agentic_workflow(code, skill_level, programming_language, explanation_language, user_role):
    timeline = []
    suggestions = []

    # Explanation
    explain_prompt = (
        f"You are a friendly and insightful {programming_language} expert helping a {skill_level} {user_role}. "
        f"Explain this code in {explanation_language} with clear examples, analogies, and why each part matters:\n\n{code}"
    )
    explanation = blackbox_api_call(explain_prompt)
    timeline.append({"step": "Explain", "description": "Detailed explanation", "output": explanation, "code": code})
    suggestions.append("Consider refactoring your code to improve readability and performance.")
    add_to_blackbox_history(explain_prompt, explanation, "workflow")

    # Refactor
    refactor_prompt = (
        f"Refactor this {programming_language} code. Explain the changes like a mentor helping a {skill_level} {user_role}. "
        f"Include best practices and improvements:\n\n{code}"
    )
    refactor_response = blackbox_api_call(refactor_prompt)
    add_to_blackbox_history(refactor_prompt, refactor_response, "workflow")
    if "```" in refactor_response:
        parts = refactor_response.split("```")
        refactored_code = ""
        for part in parts:
            if part.strip().startswith(programming_language.lower()):
                refactored_code = part.strip().split('\n', 1)[1] if '\n' in part else ""
                break
        if not refactored_code:
            refactored_code = refactor_response
    else:
        refactored_code = refactor_response
    timeline.append({"step": "Refactor", "description": "Refactored code with improvements", "output": refactored_code, "code": refactored_code})
    suggestions.append("Review the refactored code and adapt it to your style or project needs.")

    # Review
    review_prompt = (
        f"As a senior {programming_language} developer, review the refactored code. "
        f"Give constructive feedback on strengths, weaknesses, performance, security, and improvements in {explanation_language}:\n\n{refactored_code}"
    )
    review = blackbox_api_call(review_prompt)
    add_to_blackbox_history(review_prompt, review, "workflow")
    timeline.append({"step": "Review", "description": "Code review and suggestions", "output": review, "code": refactored_code})
    suggestions.append("Incorporate review feedback for cleaner, robust code.")

    # Error detection & fixes
    errors = error_detection_and_fixes(refactored_code, programming_language, skill_level, user_role, explanation_language)
    timeline.append({"step": "Error Detection", "description": "Bugs, security, performance suggestions", "output": errors, "code": refactored_code})
    suggestions.append("Apply fixes to improve code safety and performance.")

    # Test generation
    test_prompt = (
        f"Write clear, effective unit tests for this {programming_language} code. "
        f"Explain what each test does in {explanation_language}, for a {skill_level} {user_role}:\n\n{refactored_code}"
    )
    tests = blackbox_api_call(test_prompt)
    add_to_blackbox_history(test_prompt, tests, "workflow")
    timeline.append({"step": "Test Generation", "description": "Generated unit tests", "output": tests, "code": tests})
    suggestions.append("Run generated tests locally to validate changes.")

    return timeline, suggestions

def get_inline_diff_html(original, modified):
    differ = difflib.HtmlDiff(tabsize=4, wrapcolumn=80)
    html = differ.make_table(
        original.splitlines(), modified.splitlines(),
        "Original", "Refactored", context=True, numlines=2
    )
    return f'<div style="overflow-x:auto; max-height:400px;">{html}</div>'

def detect_code_type(code, programming_language):
    backend_keywords = [
        'flask', 'django', 'express', 'fastapi', 'spring', 'controller', 'api', 'server', 'database', 'sql', 'mongoose'
    ]
    frontend_keywords = [
        'react', 'vue', 'angular', 'component', 'html', 'css', 'document.getelementbyid', 'window.', 'render', 'jsx',
        '<html', '<body', '<script', '<div', 'getelementbyid', 'queryselector', 'addeventlistener', 'innerhtml'
    ]
    data_science_keywords = [
        'pandas', 'numpy', 'sklearn', 'matplotlib', 'seaborn', 'plt', 'train_test_split', 'randomforestclassifier', 'classification_report'
    ]
    code_lower = code.lower()
    if any(word in code_lower for word in data_science_keywords):
        return 'data_science'
    if any(word in code_lower for word in frontend_keywords):
        return 'frontend'
    if programming_language.lower() in ['python', 'java', 'c#']:
        if any(word in code_lower for word in backend_keywords):
            return 'backend'
    if programming_language.lower() in ['javascript', 'typescript', 'java', 'c#']:
        if any(word in code_lower for word in frontend_keywords):
            return 'frontend'
    if programming_language.lower() in ['python', 'java', 'c#']:
        return 'backend'
    if programming_language.lower() in ['javascript', 'typescript']:
        return 'frontend'
    return 'unknown'

def code_complexity(code):
    lines = code.count('\n') + 1
    functions = code.count('def ')
    classes = code.count('class ')
    comments = code.count('#')
    return f"Lines: {lines}, Functions: {functions}, Classes: {classes}, Comments: {comments}"

def code_matches_language(code: str, language: str) -> bool:
    code_lower = code.strip().lower()
    language = language.lower()
    patterns = {
        "python": [
            "def ", "class ", "import ", "from ", "try:", "except", "raise", "lambda",
            "with ", "yield", "async ", "await ", "print(", "self.", "__init__", "__name__",
            "if __name__ == '__main__':", "#!",
        ],
        "c++": [
            "#include", "int main(", "std::", "::", "cout <<", "cin >>", "new ", "delete ",
            "try {", "catch(", "template<", "using namespace", "class ", "struct ", "#define",
        ],
        "java": [
            "package ", "import java.", "public class", "private ", "protected ", "public static void main",
            "System.out.println", "try {", "catch(", "throw new ", "implements ", "extends ",
            "@Override", "interface ", "enum ", "synchronized ", "final ",
        ],
        "c#": [
            "using System", "namespace ", "class ", "interface ", "public static void Main",
            "Console.WriteLine", "try {", "catch(", "throw ", "async ", "await ", "get;", "set;",
            "List<", "Dictionary<", "[Serializable]", "[Obsolete]",
        ],
        "javascript": [
            "function ", "const ", "let ", "var ", "document.", "window.", "console.log",
            "if(", "for(", "while(", "switch(", "try {", "catch(", "export ", "import ", "async ",
            "await ", "=>", "this.", "class ", "prototype", "new ", "$(",
        ],
        "typescript": [
            "function ", "const ", "let ", "interface ", "type ", ": string", ": number", ": boolean",
            "implements ", "extends ", "enum ", "public ", "private ", "protected ", "readonly ",
            "import ", "export ", "console.log", "async ", "await ", "=>", "this.",
        ],
        "html": [
            "<!doctype html", "<html", "<head>", "<body>", "<script", "<style", "<meta ", "<link ",
            "<title>", "<div", "<span", "<p>", "<h1>", "<ul>", "<li>", "<form", "<input", "<button",
            "<table", "<footer", "<header", "<section", "<article", "<nav", "<img", "<a ", "</html>",
        ],
    }
    match_patterns = patterns.get(language, [])
    match_count = sum(1 for pattern in match_patterns if pattern in code_lower)
    return match_count >= 1

# --- Chat History ---
if 'blackbox_chat_history' not in st.session_state:
    st.session_state['blackbox_chat_history'] = []

def add_to_blackbox_history(prompt, response, mode):
    st.session_state['blackbox_chat_history'].append({
        'mode': mode,  # 'workflow' or 'semantic_search'
        'prompt': prompt,
        'response': response
    })

def show_blackbox_history():
    st.sidebar.markdown('---')
    st.sidebar.subheader('πŸ•‘ Blackbox Agent Chat History')
    if not st.session_state['blackbox_chat_history']:
        st.sidebar.info('No chat history this session.')
    else:
        for i, entry in enumerate(reversed(st.session_state['blackbox_chat_history'])):
            with st.sidebar.expander(f"{entry['mode'].replace('_', ' ').title()} #{len(st.session_state['blackbox_chat_history'])-i}"):
                st.markdown(f"**Prompt:**\n{entry['prompt']}")
                st.markdown(f"**Response:**\n{entry['response']}")

# --- Page config ---
st.set_page_config(page_title="πŸš€ AI Assistant with Workflow + Semantic Search", layout="wide")

# --- Sidebar ---
st.sidebar.title("πŸ”§ Configuration")
lang = st.sidebar.selectbox("Programming Language", ["Python", "JavaScript", "C++", "Java", "C#", "TypeScript"])
skill = st.sidebar.selectbox("Skill Level", ["Beginner", "Intermediate", "Expert"])
role = st.sidebar.selectbox("Your Role", ["Student", "Frontend Developer", "Backend Developer", "Data Scientist"])
explain_lang = st.sidebar.selectbox("Explanation Language", ["English", "Spanish", "Chinese", "Urdu"])
st.sidebar.markdown("---")
st.sidebar.markdown("<span style='color:#fff;'>Powered by <b>BLACKBOX.AI</b></span>", unsafe_allow_html=True)

# Show chat history in sidebar
show_blackbox_history()

# Download chat history
if st.session_state['blackbox_chat_history']:
    chat_history_text = ""
    for entry in st.session_state['blackbox_chat_history']:
        chat_history_text += f"Mode: {entry['mode']}\nPrompt: {entry['prompt']}\nResponse: {entry['response']}\n\n"
    st.sidebar.download_button(
        label="Download Chat History",
        data=chat_history_text,
        file_name="blackbox_chat_history.txt",
        mime="text/plain"
    )

tabs = st.tabs(["🧠 Full AI Workflow", "πŸ” Semantic Search"])

# --- Tab 1: Full AI Workflow ---
with tabs[0]:
    st.title("🧠 Full AI Workflow")
    file_types = {
        "Python": ["py"],
        "JavaScript": ["js"],
        "C++": ["cpp", "h", "hpp"],
        "Java": ["java"],
        "C#": ["cs"],
        "TypeScript": ["ts"],
    }

    uploaded_file = st.file_uploader(
        f"Upload {', '.join(file_types.get(lang, []))} file(s)", 
        type=file_types.get(lang, None)
    )
    if uploaded_file:
        code_input = uploaded_file.read().decode("utf-8")
    else:
        code_input = st.text_area("Your Code", height=300, placeholder="Paste your code here...")

    if code_input:
        st.markdown(f"<b>Complexity:</b> {code_complexity(code_input)}", unsafe_allow_html=True)

    if st.button("Run AI Workflow"):
        if not code_input.strip():
            st.warning("Please paste or upload your code.")
        elif not code_matches_language(code_input, lang):
            st.error(f"The pasted code doesn’t look like valid {lang} code. Please check your code or select the correct language.")
        else:  
            code_type = detect_code_type(code_input, lang)
            if code_type == "data_science" and role != "Data Scientist":
                st.error("Data science code detected. Please select 'Data Scientist' role.")
            elif code_type == "frontend" and role != "Frontend Developer":
                st.error("Frontend code detected. Please select 'Frontend Developer' role.")
            elif code_type == "backend" and role != "Backend Developer":
                st.error("Backend code detected. Please select 'Backend Developer' role.")
            else:
                with st.spinner("Running agentic workflow..."):
                    timeline, suggestions = agentic_workflow(code_input, skill, lang, explain_lang, role)
                
                # Show each step in an expander
                for step in timeline:
                    with st.expander(f"βœ… {step['step']} - {step['description']}"):
                        if step['step'] == "Refactor":
                            diff_html = get_inline_diff_html(code_input, step['code'])
                            st.markdown(diff_html, unsafe_allow_html=True)
                            st.code(step['output'], language=lang.lower())
                        else:
                            st.markdown(step['output'])

                st.markdown("#### Agent Suggestions")
                for s in suggestions:
                    st.markdown(f"- {s}")

                # Download buttons after suggestions
                st.markdown("---")
                st.markdown("### πŸ“₯ Download Results")

                report_text = ""
                for step in timeline:
                    report_text += f"## {step['step']}\n{step['description']}\n\n{step['output']}\n\n"

                st.download_button(
                    label="πŸ“„ Download Full Workflow Report",
                    data=report_text,
                    file_name="ai_workflow_report.txt",
                    mime="text/plain",
                )

# --- Tab 2: Semantic Search ---
with tabs[1]:
    st.title("πŸ” Semantic Search")
    sem_code = st.text_area("Your Code", height=300, placeholder="Paste your code...")
    sem_q = st.text_input("Your Question", placeholder="E.g., What does this function do?")
    if st.button("Run Semantic Search"):
        if not sem_code.strip() or not sem_q.strip():
            st.warning("Code and question required.")
        else:
            with st.spinner("Running semantic search..."):
                answer = semantic_search_improved(sem_code, sem_q, lang, skill, role, explain_lang)
                st.markdown("### πŸ“Œ Answer")
                st.markdown(answer)

st.markdown("---")