Spaces:
Sleeping
Sleeping
import streamlit as st | |
import difflib | |
import re | |
import requests | |
import datetime | |
import streamlit.components.v1 as components | |
# --- CONFIG --- | |
# Place your API keys here | |
GROQ_API_KEY = st.secrets.get('GROQ_API_KEY', 'YOUR_GROQ_API_KEY') | |
BLACKBOX_API_KEY = st.secrets.get('BLACKBOX_API_KEY', 'YOUR_BLACKBOX_API_KEY') | |
PROGRAMMING_LANGUAGES = ["Python", "JavaScript", "TypeScript", "Java", "C++", "C#"] | |
SKILL_LEVELS = ["Beginner", "Intermediate", "Expert"] | |
USER_ROLES = ["Student", "Frontend Developer", "Backend Developer", "Data Scientist"] | |
EXPLANATION_LANGUAGES = ["English", "Spanish", "Chinese", "Urdu"] | |
EXAMPLE_QUESTIONS = [ | |
"What does this function do?", | |
"How can I optimize this code?", | |
"What are the potential bugs in this code?", | |
"How does this algorithm work?", | |
"What design patterns are used here?", | |
"How can I make this code more readable?" | |
] | |
LANGUAGE_KEYWORDS = { | |
"Python": ["def ", "import ", "self", "print(", "lambda", "None"], | |
"JavaScript": ["function ", "console.log", "var ", "let ", "const ", "=>"], | |
"TypeScript": ["interface ", "type ", ": string", ": number", "export ", "import "], | |
"Java": ["public class", "System.out.println", "void main", "import java.", "new "], | |
"C++": ["#include", "std::", "cout <<", "cin >>", "int main(", "using namespace"], | |
"C#": ["using System;", "namespace ", "public class", "Console.WriteLine", "static void Main"] | |
} | |
# --- API STUBS --- | |
def call_groq_api(prompt, model="llama3-70b-8192"): | |
# Replace with actual Groq API call | |
headers = {"Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json"} | |
data = {"model": model, "messages": [{"role": "user", "content": prompt}]} | |
response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=data, headers=headers) | |
if response.status_code == 200: | |
return response.json()['choices'][0]['message']['content'] | |
else: | |
return f"[Groq API Error] {response.text}" | |
def call_blackbox_agent(messages): | |
url = "https://api.blackbox.ai/v1/chat/completions" | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {BLACKBOX_API_KEY}" | |
} | |
data = { | |
"model": "code-chat", | |
"messages": messages | |
} | |
response = requests.post(url, headers=headers, json=data) | |
if response.status_code == 200: | |
return response.json()["choices"][0]["message"]["content"] | |
else: | |
return call_groq_api(messages[-1]["content"]) | |
# --- UTILS --- | |
def code_matches_language(code, language): | |
keywords = LANGUAGE_KEYWORDS.get(language, []) | |
return any(kw in code for kw in keywords) | |
def calculate_code_complexity(code): | |
# Dummy complexity metric | |
lines = code.count('\n') + 1 | |
return f"{lines} lines" | |
def get_inline_diff(original, modified): | |
diff = difflib.unified_diff( | |
original.splitlines(), | |
modified.splitlines(), | |
lineterm='', | |
fromfile='Original', | |
tofile='Refactored' | |
) | |
return '\n'.join(diff) | |
def is_coding_question(question): | |
""" | |
Uses Blackbox AI agent to check if the question is about programming/code. | |
Returns True if yes, False otherwise. | |
""" | |
messages = [ | |
{"role": "system", "content": "You are a helpful coding assistant."}, | |
{"role": "user", "content": f"Is the following question about programming or code? Answer only 'yes' or 'no'. Question: {question}"} | |
] | |
try: | |
response = call_blackbox_agent(messages) | |
return 'yes' in response.lower() | |
except Exception: | |
return False | |
def get_explanation_prompt(code, programming_language, skill_level, user_role, explanation_language, question=None): | |
lang_instruction = f" Respond in {explanation_language}." if explanation_language != "English" else "" | |
if question: | |
return f"{question}\n\nCode:\n{code}\n{lang_instruction}" | |
return ( | |
f"Explain this {programming_language} code for a {skill_level} {user_role}.{lang_instruction}\n{code}" | |
) | |
# --- SESSION STATE FOR CHAT HISTORY --- | |
if "workflow_history" not in st.session_state: | |
st.session_state.workflow_history = [] | |
if "semantic_history" not in st.session_state: | |
st.session_state.semantic_history = [] | |
if "comment_history" not in st.session_state: | |
st.session_state.comment_history = [] | |
# --- STREAMLIT APP --- | |
st.set_page_config(page_title="Code Workflows", layout="wide") | |
st.title("Code Genie") | |
# Navigation | |
page = st.sidebar.radio("Navigate", ["Home", "Code Workflows", "Semantic Search", "Code Comment Generator"]) | |
if page == "Home": | |
st.header("Welcome to the Code Genie!") | |
st.markdown(""" | |
- **Full Code Workflow:** Complete code analysis pipeline with explanation, refactoring, review, and testing (powered by Groq/Blackbox) | |
- **Semantic Search:** Ask natural language questions about your code and get intelligent answers | |
- **Code Comment Generator:** Helps you add helpful comments to your code for better readability | |
""") | |
st.info("Select a feature from the sidebar to get started.") | |
elif page == "Code Workflows": | |
st.header("Full Code Workflows") | |
code_input = st.text_area("Paste your code here", height=200) | |
uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"]) | |
if uploaded_file: | |
code_input = uploaded_file.read().decode("utf-8") | |
st.text_area("File content", code_input, height=200, key="file_content") | |
col1, col2, col3, col4 = st.columns(4) | |
with col1: | |
programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES) | |
with col2: | |
skill_level = st.selectbox("Skill Level", SKILL_LEVELS) | |
with col3: | |
user_role = st.selectbox("Your Role", USER_ROLES) | |
with col4: | |
explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES) | |
if code_input: | |
st.caption(f"Complexity: {calculate_code_complexity(code_input)}") | |
if st.button("Run Workflow", type="primary"): | |
if not code_input.strip(): | |
st.error("Please paste or upload your code.") | |
elif not code_matches_language(code_input, programming_language): | |
st.error(f"Language mismatch. Please check your code and language selection.") | |
else: | |
with st.spinner("Running AI Workflow..."): | |
lang_instruction = f" Respond in {explanation_language}." if explanation_language != "English" else "" | |
role_level_instruction = f" The user is a {skill_level} {user_role}." | |
steps = [ | |
("Explain", call_groq_api(get_explanation_prompt(code_input, programming_language, skill_level, user_role, explanation_language))), | |
("Refactor", call_blackbox_agent([ | |
{"role": "system", "content": "You are a helpful coding assistant."}, | |
{"role": "user", "content": f"Refactor this {programming_language} code for a {skill_level} {user_role}: {code_input}{lang_instruction}"} | |
])), | |
("Review", call_groq_api(f"Review this {programming_language} code for errors and improvements for a {skill_level} {user_role}: {code_input}{lang_instruction}")), | |
("ErrorDetection", call_groq_api(f"Find bugs in this {programming_language} code for a {skill_level} {user_role}: {code_input}{lang_instruction}")), | |
("TestGeneration", call_groq_api(f"Generate tests for this {programming_language} code for a {skill_level} {user_role}: {code_input}{lang_instruction}")), | |
] | |
timeline = [] | |
for step, output in steps: | |
timeline.append({"step": step, "output": output}) | |
st.success("Workflow complete!") | |
for t in timeline: | |
st.subheader(t["step"]) | |
st.write(t["output"]) | |
# Show code diff (dummy for now) | |
st.subheader("Code Diff (Original vs Refactored)") | |
refactored_code = steps[1][1] # Blackbox agent output | |
st.code(get_inline_diff(code_input, refactored_code), language=programming_language.lower()) | |
# Download report | |
report = f"AI Workflow Report\nGenerated on: {datetime.datetime.now()}\nLanguage: {programming_language}\nSkill Level: {skill_level}\nRole: {user_role}\n\n" | |
for t in timeline: | |
report += f"## {t['step']}\n{t['output']}\n\n---\n\n" | |
st.download_button("Download Report", report, file_name="ai_workflow_report.txt") | |
# Save to chat history | |
st.session_state.workflow_history.append({ | |
"timestamp": str(datetime.datetime.now()), | |
"user_code": code_input, | |
"params": { | |
"language": programming_language, | |
"skill": skill_level, | |
"role": user_role, | |
"explanation_language": explanation_language | |
}, | |
"timeline": timeline, | |
"refactored_code": refactored_code | |
}) | |
# Show chat history for workflows | |
st.markdown("### Workflow Chat History") | |
if st.button("Clear Workflow History"): | |
st.session_state.workflow_history = [] | |
for entry in reversed(st.session_state.workflow_history): | |
st.markdown(f"**[{entry['timestamp']}]**") | |
st.code(entry["user_code"], language=entry["params"]["language"].lower()) | |
for t in entry["timeline"]: | |
st.subheader(t["step"]) | |
st.write(t["output"]) | |
st.subheader("Code Diff (Original vs Refactored)") | |
st.code(get_inline_diff(entry["user_code"], entry["refactored_code"]), language=entry["params"]["language"].lower()) | |
st.markdown("---") | |
elif page == "Semantic Search": | |
st.header("Semantic Search") | |
code_input = st.text_area("Paste your code here", height=200, key="sem_code") | |
uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"], key="sem_file") | |
if uploaded_file: | |
code_input = uploaded_file.read().decode("utf-8") | |
st.text_area("File content", code_input, height=200, key="sem_file_content") | |
col1, col2, col3, col4 = st.columns(4) | |
with col1: | |
programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES, key="sem_lang") | |
with col2: | |
skill_level = st.selectbox("Skill Level", SKILL_LEVELS, key="sem_skill") | |
with col3: | |
user_role = st.selectbox("Your Role", USER_ROLES, key="sem_role") | |
with col4: | |
explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES, key="sem_expl") | |
st.caption("Example questions:") | |
st.write(", ".join(EXAMPLE_QUESTIONS)) | |
# Only text input for question | |
question = st.text_input("Ask a question about your code", key="sem_question") | |
# Run Semantic Search button | |
if st.button("Run Semantic Search"): | |
if not code_input.strip() or not question.strip(): | |
st.error("Both code and question are required.") | |
elif not code_matches_language(code_input, programming_language): | |
st.error(f"Language mismatch. Please check your code and language selection.") | |
else: | |
with st.spinner("Running Semantic Search..."): | |
prompt = get_explanation_prompt(code_input, programming_language, skill_level, user_role, explanation_language, question=question) | |
answer = call_groq_api(prompt) | |
st.success("Answer:") | |
st.write(answer) | |
# Save to chat history | |
st.session_state.semantic_history.append({ | |
"timestamp": str(datetime.datetime.now()), | |
"user_code": code_input, | |
"question": question, | |
"params": { | |
"language": programming_language, | |
"skill": skill_level, | |
"role": user_role, | |
"explanation_language": explanation_language | |
}, | |
"answer": answer | |
}) | |
# Show chat history for semantic search | |
st.markdown("### Semantic Search Chat History") | |
if st.button("Clear Semantic History"): | |
st.session_state.semantic_history = [] | |
for entry in reversed(st.session_state.semantic_history): | |
st.markdown(f"**[{entry['timestamp']}]**") | |
st.code(entry["user_code"], language=entry["params"]["language"].lower()) | |
st.markdown(f"**Q:** {entry['question']}") | |
st.markdown(f"**A:** {entry['answer']}") | |
st.markdown("---") | |
elif page == "Code Comment Generator": | |
st.header("Code Comment Generator") | |
code_input = st.text_area("Paste your code here", height=200, key="comment_code") | |
uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"], key="comment_file") | |
if uploaded_file: | |
code_input = uploaded_file.read().decode("utf-8") | |
st.text_area("File content", code_input, height=200, key="comment_file_content") | |
programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES, key="comment_lang") | |
if st.button("Generate Comments"): | |
if not code_input.strip(): | |
st.error("Please paste or upload your code.") | |
elif not code_matches_language(code_input, programming_language): | |
st.error(f"Language mismatch. Please check your code and language selection.") | |
else: | |
with st.spinner("Generating commented code..."): | |
lang_instruction = f" Respond in {explanation_language}." if explanation_language != "English" else "" | |
role_level_instruction = f" The user is a {skill_level} {user_role}." | |
prompt = ( | |
f"Add clear, helpful comments to this {programming_language} code for a {skill_level} {user_role}.{lang_instruction}\n\n" | |
f"{code_input}" | |
) | |
commented_code = call_blackbox_agent([ | |
{"role": "system", "content": "You are a helpful coding assistant."}, | |
{"role": "user", "content": prompt} | |
]) | |
st.success("Commented code generated!") | |
st.code(commented_code, language=programming_language.lower()) | |
st.download_button("Download Commented Code", commented_code, file_name="commented_code.txt") | |
# Save to chat history | |
st.session_state.comment_history.append({ | |
"timestamp": str(datetime.datetime.now()), | |
"user_code": code_input, | |
"params": { | |
"language": programming_language, | |
"skill": skill_level, | |
"role": user_role, | |
"explanation_language": explanation_language | |
}, | |
"commented_code": commented_code | |
}) | |
# Show chat history for code comments | |
st.markdown("### Code Comment Chat History") | |
if st.button("Clear Comment History"): | |
st.session_state.comment_history = [] | |
for entry in reversed(st.session_state.comment_history): | |
st.markdown(f"**[{entry['timestamp']}]**") | |
st.code(entry["user_code"], language=entry["params"]["language"].lower()) | |
st.markdown("**Commented Code:**") | |
st.code(entry["commented_code"], language=entry["params"]["language"].lower()) | |
st.markdown("---") | |
st.markdown("---") | |
def split_code_into_chunks(code, lang): | |
if lang.lower() == "python": | |
# Corrected regex pattern for Python code splitting | |
pattern = r'(def\s+\w+\(.*?\):|class\s+\w+\(.*?\)?:)' | |
splits = re.split(pattern, code) | |
chunks = [] | |
for i in range(1, len(splits), 2): | |
header = splits[i] | |
body = splits[i+1] if (i+1) < len(splits) else "" | |
chunks.append(header + body) | |
return chunks if chunks else [code] | |
else: | |
return [code] |