Naz786's picture
Update app.py
ace21af verified
import streamlit as st
import difflib
import re
import requests
import datetime
import streamlit.components.v1 as components
# --- CONFIG ---
# Place your API keys here
GROQ_API_KEY = st.secrets.get('GROQ_API_KEY', 'YOUR_GROQ_API_KEY')
BLACKBOX_API_KEY = st.secrets.get('BLACKBOX_API_KEY', 'YOUR_BLACKBOX_API_KEY')
PROGRAMMING_LANGUAGES = ["Python", "JavaScript", "TypeScript", "Java", "C++", "C#"]
SKILL_LEVELS = ["Beginner", "Intermediate", "Expert"]
USER_ROLES = ["Student", "Frontend Developer", "Backend Developer", "Data Scientist"]
EXPLANATION_LANGUAGES = ["English", "Spanish", "Chinese", "Urdu"]
EXAMPLE_QUESTIONS = [
"What does this function do?",
"How can I optimize this code?",
"What are the potential bugs in this code?",
"How does this algorithm work?",
"What design patterns are used here?",
"How can I make this code more readable?"
]
LANGUAGE_KEYWORDS = {
"Python": ["def ", "import ", "self", "print(", "lambda", "None"],
"JavaScript": ["function ", "console.log", "var ", "let ", "const ", "=>"],
"TypeScript": ["interface ", "type ", ": string", ": number", "export ", "import "],
"Java": ["public class", "System.out.println", "void main", "import java.", "new "],
"C++": ["#include", "std::", "cout <<", "cin >>", "int main(", "using namespace"],
"C#": ["using System;", "namespace ", "public class", "Console.WriteLine", "static void Main"]
}
# --- API STUBS ---
def call_groq_api(prompt, model="llama3-70b-8192"):
# Replace with actual Groq API call
headers = {"Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json"}
data = {"model": model, "messages": [{"role": "user", "content": prompt}]}
response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=data, headers=headers)
if response.status_code == 200:
return response.json()['choices'][0]['message']['content']
else:
return f"[Groq API Error] {response.text}"
def call_blackbox_agent(messages):
url = "https://api.blackbox.ai/v1/chat/completions"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {BLACKBOX_API_KEY}"
}
data = {
"model": "code-chat",
"messages": messages
}
response = requests.post(url, headers=headers, json=data)
if response.status_code == 200:
return response.json()["choices"][0]["message"]["content"]
else:
return call_groq_api(messages[-1]["content"])
# --- UTILS ---
def code_matches_language(code, language):
keywords = LANGUAGE_KEYWORDS.get(language, [])
return any(kw in code for kw in keywords)
def calculate_code_complexity(code):
# Dummy complexity metric
lines = code.count('\n') + 1
return f"{lines} lines"
def get_inline_diff(original, modified):
diff = difflib.unified_diff(
original.splitlines(),
modified.splitlines(),
lineterm='',
fromfile='Original',
tofile='Refactored'
)
return '\n'.join(diff)
def is_coding_question(question):
"""
Uses Blackbox AI agent to check if the question is about programming/code.
Returns True if yes, False otherwise.
"""
messages = [
{"role": "system", "content": "You are a helpful coding assistant."},
{"role": "user", "content": f"Is the following question about programming or code? Answer only 'yes' or 'no'. Question: {question}"}
]
try:
response = call_blackbox_agent(messages)
return 'yes' in response.lower()
except Exception:
return False
def get_explanation_prompt(code, programming_language, skill_level, user_role, explanation_language, question=None):
lang_instruction = f" Respond in {explanation_language}." if explanation_language != "English" else ""
if question:
return f"{question}\n\nCode:\n{code}\n{lang_instruction}"
return (
f"Explain this {programming_language} code for a {skill_level} {user_role}.{lang_instruction}\n{code}"
)
# --- SESSION STATE FOR CHAT HISTORY ---
if "workflow_history" not in st.session_state:
st.session_state.workflow_history = []
if "semantic_history" not in st.session_state:
st.session_state.semantic_history = []
if "comment_history" not in st.session_state:
st.session_state.comment_history = []
# --- STREAMLIT APP ---
st.set_page_config(page_title="Code Workflows", layout="wide")
st.title("Code Genie")
# Navigation
page = st.sidebar.radio("Navigate", ["Home", "Code Workflows", "Semantic Search", "Code Comment Generator"])
if page == "Home":
st.header("Welcome to the Code Genie!")
st.markdown("""
- **Full Code Workflow:** Complete code analysis pipeline with explanation, refactoring, review, and testing (powered by Groq/Blackbox)
- **Semantic Search:** Ask natural language questions about your code and get intelligent answers
- **Code Comment Generator:** Helps you add helpful comments to your code for better readability
""")
st.info("Select a feature from the sidebar to get started.")
elif page == "Code Workflows":
st.header("Full Code Workflows")
code_input = st.text_area("Paste your code here", height=200)
uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"])
if uploaded_file:
code_input = uploaded_file.read().decode("utf-8")
st.text_area("File content", code_input, height=200, key="file_content")
col1, col2, col3, col4 = st.columns(4)
with col1:
programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES)
with col2:
skill_level = st.selectbox("Skill Level", SKILL_LEVELS)
with col3:
user_role = st.selectbox("Your Role", USER_ROLES)
with col4:
explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES)
if code_input:
st.caption(f"Complexity: {calculate_code_complexity(code_input)}")
if st.button("Run Workflow", type="primary"):
if not code_input.strip():
st.error("Please paste or upload your code.")
elif not code_matches_language(code_input, programming_language):
st.error(f"Language mismatch. Please check your code and language selection.")
else:
with st.spinner("Running AI Workflow..."):
lang_instruction = f" Respond in {explanation_language}." if explanation_language != "English" else ""
role_level_instruction = f" The user is a {skill_level} {user_role}."
steps = [
("Explain", call_groq_api(get_explanation_prompt(code_input, programming_language, skill_level, user_role, explanation_language))),
("Refactor", call_blackbox_agent([
{"role": "system", "content": "You are a helpful coding assistant."},
{"role": "user", "content": f"Refactor this {programming_language} code for a {skill_level} {user_role}: {code_input}{lang_instruction}"}
])),
("Review", call_groq_api(f"Review this {programming_language} code for errors and improvements for a {skill_level} {user_role}: {code_input}{lang_instruction}")),
("ErrorDetection", call_groq_api(f"Find bugs in this {programming_language} code for a {skill_level} {user_role}: {code_input}{lang_instruction}")),
("TestGeneration", call_groq_api(f"Generate tests for this {programming_language} code for a {skill_level} {user_role}: {code_input}{lang_instruction}")),
]
timeline = []
for step, output in steps:
timeline.append({"step": step, "output": output})
st.success("Workflow complete!")
for t in timeline:
st.subheader(t["step"])
st.write(t["output"])
# Show code diff (dummy for now)
st.subheader("Code Diff (Original vs Refactored)")
refactored_code = steps[1][1] # Blackbox agent output
st.code(get_inline_diff(code_input, refactored_code), language=programming_language.lower())
# Download report
report = f"AI Workflow Report\nGenerated on: {datetime.datetime.now()}\nLanguage: {programming_language}\nSkill Level: {skill_level}\nRole: {user_role}\n\n"
for t in timeline:
report += f"## {t['step']}\n{t['output']}\n\n---\n\n"
st.download_button("Download Report", report, file_name="ai_workflow_report.txt")
# Save to chat history
st.session_state.workflow_history.append({
"timestamp": str(datetime.datetime.now()),
"user_code": code_input,
"params": {
"language": programming_language,
"skill": skill_level,
"role": user_role,
"explanation_language": explanation_language
},
"timeline": timeline,
"refactored_code": refactored_code
})
# Show chat history for workflows
st.markdown("### Workflow Chat History")
if st.button("Clear Workflow History"):
st.session_state.workflow_history = []
for entry in reversed(st.session_state.workflow_history):
st.markdown(f"**[{entry['timestamp']}]**")
st.code(entry["user_code"], language=entry["params"]["language"].lower())
for t in entry["timeline"]:
st.subheader(t["step"])
st.write(t["output"])
st.subheader("Code Diff (Original vs Refactored)")
st.code(get_inline_diff(entry["user_code"], entry["refactored_code"]), language=entry["params"]["language"].lower())
st.markdown("---")
elif page == "Semantic Search":
st.header("Semantic Search")
code_input = st.text_area("Paste your code here", height=200, key="sem_code")
uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"], key="sem_file")
if uploaded_file:
code_input = uploaded_file.read().decode("utf-8")
st.text_area("File content", code_input, height=200, key="sem_file_content")
col1, col2, col3, col4 = st.columns(4)
with col1:
programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES, key="sem_lang")
with col2:
skill_level = st.selectbox("Skill Level", SKILL_LEVELS, key="sem_skill")
with col3:
user_role = st.selectbox("Your Role", USER_ROLES, key="sem_role")
with col4:
explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES, key="sem_expl")
st.caption("Example questions:")
st.write(", ".join(EXAMPLE_QUESTIONS))
# Only text input for question
question = st.text_input("Ask a question about your code", key="sem_question")
# Run Semantic Search button
if st.button("Run Semantic Search"):
if not code_input.strip() or not question.strip():
st.error("Both code and question are required.")
elif not code_matches_language(code_input, programming_language):
st.error(f"Language mismatch. Please check your code and language selection.")
else:
with st.spinner("Running Semantic Search..."):
prompt = get_explanation_prompt(code_input, programming_language, skill_level, user_role, explanation_language, question=question)
answer = call_groq_api(prompt)
st.success("Answer:")
st.write(answer)
# Save to chat history
st.session_state.semantic_history.append({
"timestamp": str(datetime.datetime.now()),
"user_code": code_input,
"question": question,
"params": {
"language": programming_language,
"skill": skill_level,
"role": user_role,
"explanation_language": explanation_language
},
"answer": answer
})
# Show chat history for semantic search
st.markdown("### Semantic Search Chat History")
if st.button("Clear Semantic History"):
st.session_state.semantic_history = []
for entry in reversed(st.session_state.semantic_history):
st.markdown(f"**[{entry['timestamp']}]**")
st.code(entry["user_code"], language=entry["params"]["language"].lower())
st.markdown(f"**Q:** {entry['question']}")
st.markdown(f"**A:** {entry['answer']}")
st.markdown("---")
elif page == "Code Comment Generator":
st.header("Code Comment Generator")
code_input = st.text_area("Paste your code here", height=200, key="comment_code")
uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"], key="comment_file")
if uploaded_file:
code_input = uploaded_file.read().decode("utf-8")
st.text_area("File content", code_input, height=200, key="comment_file_content")
programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES, key="comment_lang")
if st.button("Generate Comments"):
if not code_input.strip():
st.error("Please paste or upload your code.")
elif not code_matches_language(code_input, programming_language):
st.error(f"Language mismatch. Please check your code and language selection.")
else:
with st.spinner("Generating commented code..."):
lang_instruction = f" Respond in {explanation_language}." if explanation_language != "English" else ""
role_level_instruction = f" The user is a {skill_level} {user_role}."
prompt = (
f"Add clear, helpful comments to this {programming_language} code for a {skill_level} {user_role}.{lang_instruction}\n\n"
f"{code_input}"
)
commented_code = call_blackbox_agent([
{"role": "system", "content": "You are a helpful coding assistant."},
{"role": "user", "content": prompt}
])
st.success("Commented code generated!")
st.code(commented_code, language=programming_language.lower())
st.download_button("Download Commented Code", commented_code, file_name="commented_code.txt")
# Save to chat history
st.session_state.comment_history.append({
"timestamp": str(datetime.datetime.now()),
"user_code": code_input,
"params": {
"language": programming_language,
"skill": skill_level,
"role": user_role,
"explanation_language": explanation_language
},
"commented_code": commented_code
})
# Show chat history for code comments
st.markdown("### Code Comment Chat History")
if st.button("Clear Comment History"):
st.session_state.comment_history = []
for entry in reversed(st.session_state.comment_history):
st.markdown(f"**[{entry['timestamp']}]**")
st.code(entry["user_code"], language=entry["params"]["language"].lower())
st.markdown("**Commented Code:**")
st.code(entry["commented_code"], language=entry["params"]["language"].lower())
st.markdown("---")
st.markdown("---")
def split_code_into_chunks(code, lang):
if lang.lower() == "python":
# Corrected regex pattern for Python code splitting
pattern = r'(def\s+\w+\(.*?\):|class\s+\w+\(.*?\)?:)'
splits = re.split(pattern, code)
chunks = []
for i in range(1, len(splits), 2):
header = splits[i]
body = splits[i+1] if (i+1) < len(splits) else ""
chunks.append(header + body)
return chunks if chunks else [code]
else:
return [code]