File size: 16,252 Bytes
9b13ff2
22a5a1b
e805de7
c0897d7
4126bd5
510411f
4126bd5
 
510411f
4126bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ba6c2b
 
 
 
 
 
 
 
 
510411f
4126bd5
510411f
4126bd5
 
 
 
 
 
 
c0897d7
510411f
6e65daf
722c417
 
 
 
 
510411f
722c417
 
 
 
 
 
 
28e5266
24b3363
4126bd5
1ba6c2b
 
22a5a1b
4126bd5
510411f
 
4126bd5
 
 
 
 
 
 
 
 
9b13ff2
510411f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fd750b
1ba6c2b
0fc9abb
1ba6c2b
 
 
 
 
 
e805de7
 
 
 
 
 
 
 
24b3363
530d8c4
 
4126bd5
24b3363
530d8c4
4126bd5
24b3363
530d8c4
24b3363
e805de7
24b3363
5c1ddc7
24b3363
 
 
54d08fe
 
24b3363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
510411f
0fc9abb
b4cb22f
24b3363
1ba6c2b
24b3363
 
b4cb22f
24b3363
b4cb22f
 
 
24b3363
 
 
 
 
 
 
 
510411f
24b3363
dd5c92f
24b3363
dd5c92f
510411f
24b3363
510411f
24b3363
e805de7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24b3363
 
4126bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dca394
6fd750b
 
 
e805de7
510411f
 
 
85a827a
4126bd5
 
 
 
22a5a1b
4126bd5
1ba6c2b
 
4126bd5
dd5c92f
e805de7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
510411f
 
 
 
 
 
 
 
 
 
 
 
1ba6c2b
 
510411f
 
b4cb22f
 
510411f
b4cb22f
510411f
 
 
 
 
 
 
 
e805de7
 
 
 
 
 
b4cb22f
 
 
 
e805de7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ace21af
e805de7
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import streamlit as st
import difflib
import re
import requests
import datetime
import streamlit.components.v1 as components

# --- CONFIG ---
# Place your API keys here
GROQ_API_KEY = st.secrets.get('GROQ_API_KEY', 'YOUR_GROQ_API_KEY')
BLACKBOX_API_KEY = st.secrets.get('BLACKBOX_API_KEY', 'YOUR_BLACKBOX_API_KEY')

PROGRAMMING_LANGUAGES = ["Python", "JavaScript", "TypeScript", "Java", "C++", "C#"]
SKILL_LEVELS = ["Beginner", "Intermediate", "Expert"]
USER_ROLES = ["Student", "Frontend Developer", "Backend Developer", "Data Scientist"]
EXPLANATION_LANGUAGES = ["English", "Spanish", "Chinese", "Urdu"]
EXAMPLE_QUESTIONS = [
    "What does this function do?",
    "How can I optimize this code?",
    "What are the potential bugs in this code?",
    "How does this algorithm work?",
    "What design patterns are used here?",
    "How can I make this code more readable?"
]

LANGUAGE_KEYWORDS = {
    "Python": ["def ", "import ", "self", "print(", "lambda", "None"],
    "JavaScript": ["function ", "console.log", "var ", "let ", "const ", "=>"],
    "TypeScript": ["interface ", "type ", ": string", ": number", "export ", "import "],
    "Java": ["public class", "System.out.println", "void main", "import java.", "new "],
    "C++": ["#include", "std::", "cout <<", "cin >>", "int main(", "using namespace"],
    "C#": ["using System;", "namespace ", "public class", "Console.WriteLine", "static void Main"]
}

# --- API STUBS ---
def call_groq_api(prompt, model="llama3-70b-8192"):
    # Replace with actual Groq API call
    headers = {"Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json"}
    data = {"model": model, "messages": [{"role": "user", "content": prompt}]}
    response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=data, headers=headers)
    if response.status_code == 200:
        return response.json()['choices'][0]['message']['content']
    else:
        return f"[Groq API Error] {response.text}"

def call_blackbox_agent(messages):
    url = "https://api.blackbox.ai/v1/chat/completions"
    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {BLACKBOX_API_KEY}"
    }
    data = {
        "model": "code-chat",
        "messages": messages
    }
    response = requests.post(url, headers=headers, json=data)
    if response.status_code == 200:
        return response.json()["choices"][0]["message"]["content"]
    else:
        return call_groq_api(messages[-1]["content"])

# --- UTILS ---
def code_matches_language(code, language):
    keywords = LANGUAGE_KEYWORDS.get(language, [])
    return any(kw in code for kw in keywords)

def calculate_code_complexity(code):
    # Dummy complexity metric
    lines = code.count('\n') + 1
    return f"{lines} lines"

def get_inline_diff(original, modified):
    diff = difflib.unified_diff(
        original.splitlines(),
        modified.splitlines(),
        lineterm='',
        fromfile='Original',
        tofile='Refactored'
    )
    return '\n'.join(diff)

def is_coding_question(question):
    """
    Uses Blackbox AI agent to check if the question is about programming/code.
    Returns True if yes, False otherwise.
    """
    messages = [
        {"role": "system", "content": "You are a helpful coding assistant."},
        {"role": "user", "content": f"Is the following question about programming or code? Answer only 'yes' or 'no'. Question: {question}"}
    ]
    try:
        response = call_blackbox_agent(messages)
        return 'yes' in response.lower()
    except Exception:
        return False

def get_explanation_prompt(code, programming_language, skill_level, user_role, explanation_language, question=None):
    lang_instruction = f" Respond in {explanation_language}." if explanation_language != "English" else ""
    if question:
        return f"{question}\n\nCode:\n{code}\n{lang_instruction}"
    return (
        f"Explain this {programming_language} code for a {skill_level} {user_role}.{lang_instruction}\n{code}"
    )

# --- SESSION STATE FOR CHAT HISTORY ---
if "workflow_history" not in st.session_state:
    st.session_state.workflow_history = []
if "semantic_history" not in st.session_state:
    st.session_state.semantic_history = []
if "comment_history" not in st.session_state:
    st.session_state.comment_history = []

# --- STREAMLIT APP ---
st.set_page_config(page_title="Code Workflows", layout="wide")
st.title("Code Genie")

# Navigation
page = st.sidebar.radio("Navigate", ["Home", "Code Workflows", "Semantic Search", "Code Comment Generator"])

if page == "Home":
    st.header("Welcome to the Code Genie!")
    st.markdown("""
    - **Full Code Workflow:** Complete code analysis pipeline with explanation, refactoring, review, and testing (powered by Groq/Blackbox)
    - **Semantic Search:** Ask natural language questions about your code and get intelligent answers
    - **Code Comment Generator:** Helps you add helpful comments to your code for better readability
    """)
    st.info("Select a feature from the sidebar to get started.")

elif page == "Code Workflows":
    st.header("Full Code Workflows")
    code_input = st.text_area("Paste your code here", height=200)
    uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"])
    if uploaded_file:
        code_input = uploaded_file.read().decode("utf-8")
        st.text_area("File content", code_input, height=200, key="file_content")
    col1, col2, col3, col4 = st.columns(4)
    with col1:
        programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES)
    with col2:
        skill_level = st.selectbox("Skill Level", SKILL_LEVELS)
    with col3:
        user_role = st.selectbox("Your Role", USER_ROLES)
    with col4:
        explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES)
    if code_input:
        st.caption(f"Complexity: {calculate_code_complexity(code_input)}")
    if st.button("Run Workflow", type="primary"):
        if not code_input.strip():
            st.error("Please paste or upload your code.")
        elif not code_matches_language(code_input, programming_language):
            st.error(f"Language mismatch. Please check your code and language selection.")
        else:
            with st.spinner("Running AI Workflow..."):
                lang_instruction = f" Respond in {explanation_language}." if explanation_language != "English" else ""
                role_level_instruction = f" The user is a {skill_level} {user_role}."
                steps = [
                    ("Explain", call_groq_api(get_explanation_prompt(code_input, programming_language, skill_level, user_role, explanation_language))),
                    ("Refactor", call_blackbox_agent([
                        {"role": "system", "content": "You are a helpful coding assistant."},
                        {"role": "user", "content": f"Refactor this {programming_language} code for a {skill_level} {user_role}: {code_input}{lang_instruction}"}
                    ])),
                    ("Review", call_groq_api(f"Review this {programming_language} code for errors and improvements for a {skill_level} {user_role}: {code_input}{lang_instruction}")),
                    ("ErrorDetection", call_groq_api(f"Find bugs in this {programming_language} code for a {skill_level} {user_role}: {code_input}{lang_instruction}")),
                    ("TestGeneration", call_groq_api(f"Generate tests for this {programming_language} code for a {skill_level} {user_role}: {code_input}{lang_instruction}")),
                ]
                timeline = []
                for step, output in steps:
                    timeline.append({"step": step, "output": output})
                st.success("Workflow complete!")
                for t in timeline:
                    st.subheader(t["step"])
                    st.write(t["output"])
                # Show code diff (dummy for now)
                st.subheader("Code Diff (Original vs Refactored)")
                refactored_code = steps[1][1]  # Blackbox agent output
                st.code(get_inline_diff(code_input, refactored_code), language=programming_language.lower())
                # Download report
                report = f"AI Workflow Report\nGenerated on: {datetime.datetime.now()}\nLanguage: {programming_language}\nSkill Level: {skill_level}\nRole: {user_role}\n\n"
                for t in timeline:
                    report += f"## {t['step']}\n{t['output']}\n\n---\n\n"
                st.download_button("Download Report", report, file_name="ai_workflow_report.txt")
                # Save to chat history
                st.session_state.workflow_history.append({
                    "timestamp": str(datetime.datetime.now()),
                    "user_code": code_input,
                    "params": {
                        "language": programming_language,
                        "skill": skill_level,
                        "role": user_role,
                        "explanation_language": explanation_language
                    },
                    "timeline": timeline,
                    "refactored_code": refactored_code
                })
    # Show chat history for workflows
    st.markdown("### Workflow Chat History")
    if st.button("Clear Workflow History"):
        st.session_state.workflow_history = []
    for entry in reversed(st.session_state.workflow_history):
        st.markdown(f"**[{entry['timestamp']}]**")
        st.code(entry["user_code"], language=entry["params"]["language"].lower())
        for t in entry["timeline"]:
            st.subheader(t["step"])
            st.write(t["output"])
        st.subheader("Code Diff (Original vs Refactored)")
        st.code(get_inline_diff(entry["user_code"], entry["refactored_code"]), language=entry["params"]["language"].lower())
        st.markdown("---")

elif page == "Semantic Search":
    st.header("Semantic Search")
    code_input = st.text_area("Paste your code here", height=200, key="sem_code")
    uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"], key="sem_file")
    if uploaded_file:
        code_input = uploaded_file.read().decode("utf-8")
        st.text_area("File content", code_input, height=200, key="sem_file_content")
    col1, col2, col3, col4 = st.columns(4)
    with col1:
        programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES, key="sem_lang")
    with col2:
        skill_level = st.selectbox("Skill Level", SKILL_LEVELS, key="sem_skill")
    with col3:
        user_role = st.selectbox("Your Role", USER_ROLES, key="sem_role")
    with col4:
        explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES, key="sem_expl")

    st.caption("Example questions:")
    st.write(", ".join(EXAMPLE_QUESTIONS))

    # Only text input for question
    question = st.text_input("Ask a question about your code", key="sem_question")

    # Run Semantic Search button
    if st.button("Run Semantic Search"):
        if not code_input.strip() or not question.strip():
            st.error("Both code and question are required.")
        elif not code_matches_language(code_input, programming_language):
            st.error(f"Language mismatch. Please check your code and language selection.")
        else:
            with st.spinner("Running Semantic Search..."):
                prompt = get_explanation_prompt(code_input, programming_language, skill_level, user_role, explanation_language, question=question)
                answer = call_groq_api(prompt)
                st.success("Answer:")
                st.write(answer)
                # Save to chat history
                st.session_state.semantic_history.append({
                    "timestamp": str(datetime.datetime.now()),
                    "user_code": code_input,
                    "question": question,
                    "params": {
                        "language": programming_language,
                        "skill": skill_level,
                        "role": user_role,
                        "explanation_language": explanation_language
                    },
                    "answer": answer
                })
    # Show chat history for semantic search
    st.markdown("### Semantic Search Chat History")
    if st.button("Clear Semantic History"):
        st.session_state.semantic_history = []
    for entry in reversed(st.session_state.semantic_history):
        st.markdown(f"**[{entry['timestamp']}]**")
        st.code(entry["user_code"], language=entry["params"]["language"].lower())
        st.markdown(f"**Q:** {entry['question']}")
        st.markdown(f"**A:** {entry['answer']}")
        st.markdown("---")

elif page == "Code Comment Generator":
    st.header("Code Comment Generator")
    code_input = st.text_area("Paste your code here", height=200, key="comment_code")
    uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"], key="comment_file")
    if uploaded_file:
        code_input = uploaded_file.read().decode("utf-8")
        st.text_area("File content", code_input, height=200, key="comment_file_content")
    programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES, key="comment_lang")
    if st.button("Generate Comments"):
        if not code_input.strip():
            st.error("Please paste or upload your code.")
        elif not code_matches_language(code_input, programming_language):
            st.error(f"Language mismatch. Please check your code and language selection.")
        else:
            with st.spinner("Generating commented code..."):
                lang_instruction = f" Respond in {explanation_language}." if explanation_language != "English" else ""
                role_level_instruction = f" The user is a {skill_level} {user_role}."
                prompt = (
                    f"Add clear, helpful comments to this {programming_language} code for a {skill_level} {user_role}.{lang_instruction}\n\n"
                    f"{code_input}"
                )
                commented_code = call_blackbox_agent([
                    {"role": "system", "content": "You are a helpful coding assistant."},
                    {"role": "user", "content": prompt}
                ])
                st.success("Commented code generated!")
                st.code(commented_code, language=programming_language.lower())
                st.download_button("Download Commented Code", commented_code, file_name="commented_code.txt")
                # Save to chat history
                st.session_state.comment_history.append({
                    "timestamp": str(datetime.datetime.now()),
                    "user_code": code_input,
                    "params": {
                        "language": programming_language,
                        "skill": skill_level,
                        "role": user_role,
                        "explanation_language": explanation_language
                    },
                    "commented_code": commented_code
                })
    # Show chat history for code comments
    st.markdown("### Code Comment Chat History")
    if st.button("Clear Comment History"):
        st.session_state.comment_history = []
    for entry in reversed(st.session_state.comment_history):
        st.markdown(f"**[{entry['timestamp']}]**")
        st.code(entry["user_code"], language=entry["params"]["language"].lower())
        st.markdown("**Commented Code:**")
        st.code(entry["commented_code"], language=entry["params"]["language"].lower())
        st.markdown("---")

st.markdown("---")


def split_code_into_chunks(code, lang):
    if lang.lower() == "python":
        # Corrected regex pattern for Python code splitting
        pattern = r'(def\s+\w+\(.*?\):|class\s+\w+\(.*?\)?:)'
        splits = re.split(pattern, code)
        chunks = []
        for i in range(1, len(splits), 2):
            header = splits[i]
            body = splits[i+1] if (i+1) < len(splits) else ""
            chunks.append(header + body)
        return chunks if chunks else [code]
    else:
        return [code]