Niveytha27's picture
Upload folder using huggingface_hub
e649daa verified
raw
history blame
6.06 kB
import requests
import io
import re
import numpy as np
import faiss
import time
import gradio as gr
from pypdf import PdfReader
from rank_bm25 import BM25Okapi
from sentence_transformers import SentenceTransformer
from accelerate import Accelerator
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
def chunk_text(text, chunk_size=700, overlap_size=150):
"""Chunks text without breaking words in the middle (corrected overlap)."""
chunks = []
start = 0
text_length = len(text)
while start < text_length:
end = min(start + chunk_size, text_length)
# Ensure we do not split words
if end < text_length and text[end].isalnum():
last_space = text.rfind(" ", start, end) # Find last space within the chunk
if last_space != -1: # If a space is found, adjust the end
end = last_space
chunk = text[start:end].strip()
if chunk: # Avoid empty chunks
chunks.append(chunk)
if end == text_length:
break
# Corrected overlap calculation
overlap_start = max(0, end - overlap_size)
if overlap_start < end: # Prevent infinite loop if overlap_start is equal to end.
last_overlap_space = text.rfind(" ", 0, overlap_start)
if last_overlap_space != -1 and last_overlap_space > start:
start = last_overlap_space + 1
else:
start = end # If no space found, start at the last end.
else:
start = end
return chunks
chunks = []
for data in all_data:
chunks.extend(chunk_text(data))
embedding_model = SentenceTransformer("BAAI/bge-large-en")
# embedding_model = SentenceTransformer('multi-qa-mpnet-base-dot-v1')
embeddings = embedding_model.encode(chunks)
index = faiss.IndexFlatL2(embeddings.shape[1])
index.add(embeddings)
def bm25_retrieval(query, documents, top_k=3):
tokenized_docs = [doc.split() for doc in documents]
bm25 = BM25Okapi(tokenized_docs)
return [documents[i] for i in np.argsort(bm25.get_scores(query.split()))[::-1][:top_k]]
def adaptive_retrieval(query, index, chunks, top_k=3, bm25_weight=0.5):
query_embedding = embedding_model.encode([query], convert_to_numpy=True, dtype=np.float16)
_, indices = index.search(query_embedding, top_k)
vector_results = [chunks[i] for i in indices[0]]
bm25_results = bm25_retrieval(query, chunks, top_k)
return list(set(vector_results + bm25_results))
def rerank(query, results):
query_embedding = embedding_model.encode([query], convert_to_numpy=True)
result_embeddings = embedding_model.encode(results, convert_to_numpy=True)
similarities = np.dot(result_embeddings, query_embedding.T).flatten()
return [results[i] for i in np.argsort(similarities)[::-1]], similarities
#Chunk merging.
def merge_chunks(retrieved_chunks, overlap_size=100):
"""Merges overlapping chunks properly by detecting the actual overlap."""
merged_chunks = []
buffer = retrieved_chunks[0] if retrieved_chunks else ""
for i in range(1, len(retrieved_chunks)):
chunk = retrieved_chunks[i]
# Find actual overlap
overlap_start = buffer[-overlap_size:] # Get the last `overlap_size` chars of the previous chunk
overlap_index = chunk.find(overlap_start) # Find where this part appears in the new chunk
if overlap_index != -1:
# Merge only the non-overlapping part
buffer += chunk[overlap_index + overlap_size:]
else:
# Store completed merged chunk and start a new one
merged_chunks.append(buffer)
buffer = chunk
if buffer:
merged_chunks.append(buffer)
return merged_chunks
# def calculate_confidence(query, context, similarities):
# return np.mean(similarities) # Averaged similarity scores
def calculate_confidence(query, answer):
P, R, F1 = score([answer], [query], lang="en", verbose=False)
return F1.item()
# Load SLM
accelerator = Accelerator()
accelerator.free_memory()
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map="auto", cache_dir="./my_models")
model = accelerator.prepare(model)
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
def generate_response(query, context):
prompt = f"""Your task is to analyze the given Context and answer the Question concisely in plain English.
**Guidelines:**
- Do NOT include </think> tag, just provide the final answer only.
- Provide a direct, factual answer based strictly on the Context.
- Avoid generating Python code, solutions, or any irrelevant information.
Context: {context}
Question: {query}
Answer:
"""
response = generator(prompt, max_new_tokens=150, num_return_sequences=1)[0]['generated_text']
answer = response.split("Answer:")[1].strip()
return answer
def process_query(pdf_urls_text, query):
pdf_urls = [url.strip() for url in pdf_urls_text.split("\n") if url.strip()]
if not pdf_urls:
return "Please enter at least one PDF URL."
index, chunks = load_and_index_data(pdf_urls)
retrieved_chunks = adaptive_retrieval(query, index, chunks)
merged_chunks = merge_chunks(retrieved_chunks, 150)
reranked_chunks, similarities = rerank(query, merged_chunks)
context = " ".join(reranked_chunks[:3])
answer = generate_response(query, context)
confidence = calculate_confidence(query, answer)
full_response = f"{answer}\n\nConfidence: {confidence:.2f}"
return full_response
iface = gr.Interface(
fn=process_query,
inputs=[gr.Textbox(lines=3, placeholder="Enter PDF URLs (one per line)"), gr.Textbox(placeholder="Enter your financial question")],
outputs="text",
title="Financial Document Q&A Chatbot",
description="Enter PDF URLs and your question to get answers from the documents."
)
iface.launch()
accelerator.free_memory()