pattern / Home.py
azaher1215
fix issues
18eb171
import streamlit as st
from PIL import Image
from model.classifier import get_model, predict, get_model_by_name
from model.search_script import search_for_recipes
import streamlit.components.v1 as components
import base64
import config as config
from utils.layout import render_layout
MODEL_PATH_MAP = {
"Onion": config.MODEL_PATH_ONION,
"Pear": config.MODEL_PATH_PEAR,
"Strawberry": config.MODEL_PATH_STRAWBERRY,
"Tomato": config.MODEL_PATH_TOMATO
}
VARIATION_CLASS_MAP = {
"Onion": ['halved', 'sliced', 'whole'],
"Strawberry": ['Hulled', 'sliced', 'whole'],
"Tomato": ['diced', 'vines', 'whole'],
"Pear": ['halved', 'sliced', 'whole']
}
@st.cache_resource
def load_model():
return get_model()
@st.cache_resource
def load_model_variation(product_name):
model_path = MODEL_PATH_MAP[product_name]
num_classes = len(VARIATION_CLASS_MAP[product_name])
return get_model_by_name(model_path, num_classes=num_classes)
def classification_and_recommendation_page():
st.markdown("## 🍽️ Recipe Recommendation System")
st.markdown("""
<div class="about-box">
<b>Recipe Recommendation Guide</b><br><br>
Upload one or more food images. This module classifies each image into
<b>Onion, Pear, Strawberry, or Tomato</b> using <b>EfficientNet-B0</b>, and recommends recipes
based on the combined classification results, using a fine-tuned BERT model.<br><br>
<b>Steps:</b><br>
1️⃣ Upload images (single or multiple) of produce, or directly add tags for recipe search.<br>
2️⃣ Once uploaded, the corresponding produce tag will be automatically added to the search.<br>
3️⃣ Use the sliders to choose the number of results and minimum recipe rating.<br>
4️⃣ Click <b>"Search Recipe"</b> to view personalized recommendations.
</div></br>
""", unsafe_allow_html=True)
model = load_model()
uploaded_files = st.file_uploader("📤 Upload images (JPG/PNG)", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
if "uploaded_images" not in st.session_state:
st.session_state.uploaded_images = []
if "image_tags" not in st.session_state:
st.session_state.image_tags = {}
if "image_variations" not in st.session_state:
st.session_state.image_variations = {}
if uploaded_files:
for img_file in uploaded_files:
if img_file.name not in [img.name for img in st.session_state.uploaded_images]:
img = Image.open(img_file).convert("RGB")
label, main_class_prob = predict(img, model)
variation = None
if label in VARIATION_CLASS_MAP:
variation_model = load_model_variation(label)
class_labels = VARIATION_CLASS_MAP[label]
variation_label, var_conf = predict(img, variation_model, class_labels=class_labels)
variation = f"{variation_label} ({var_conf*main_class_prob* 100:.1f}%)"
st.session_state.uploaded_images.append(img_file)
st.session_state.image_tags[img_file.name] = label
st.session_state.image_variations[img_file.name] = variation
current_file_names = [f.name for f in uploaded_files] if uploaded_files else []
st.session_state.uploaded_images = [f for f in st.session_state.uploaded_images if f.name in current_file_names]
st.session_state.image_tags = {k: v for k, v in st.session_state.image_tags.items() if k in current_file_names}
st.session_state.image_variations = {k: v for k, v in st.session_state.image_variations.items() if k in current_file_names}
if st.session_state.uploaded_images:
html = """
<style>
.image-grid { display: flex; flex-wrap: wrap; gap: 12px; margin-top: 10px; }
.image-card {
width: 140px; height: 200px;
border: 1px solid #ccc; border-radius: 10px;
overflow: hidden; text-align: center;
font-size: 13px; position: relative;
background: #fdfdfd; box-shadow: 0 1px 4px rgba(0,0,0,0.08);
}
.image-card img {
max-width: 100%; max-height: 110px;
object-fit: contain; margin-top: 5px;
}
</style>
<div class="image-grid">
"""
for img in st.session_state.uploaded_images:
label = st.session_state.image_tags.get(img.name, "unknown")
variation = st.session_state.image_variations.get(img.name, "")
combined_label = f"{label.upper()} </br> {variation}" if variation else label.upper()
img_b64 = base64.b64encode(img.getvalue()).decode()
html += f"""
<div class="image-card">
<img src="data:image/png;base64,{img_b64}" />
<div style="margin-top: 5px; font-weight: bold; font-size: 13px;">{combined_label}</div>
<div style="color:gray; font-size:11px;">{img.name}</div>
</div>
"""
html += "</div>"
grid_rows = ((len(st.session_state.uploaded_images) - 1) // 5 + 1)
components.html(html, height=200 * grid_rows + 40, scrolling=True)
st.markdown("---")
st.markdown("## 🔍 Recipe Recommendation")
if 'search_system' not in st.session_state:
with st.spinner("Initializing recipe search system"):
st.session_state.search_system = search_for_recipes()
search_system = st.session_state.search_system
if not search_system.is_ready:
st.error("System not ready. Please check data files and try again.")
return
unique_tags = list(set(st.session_state.image_tags.values()))
default_query = " ".join(unique_tags)
query = st.text_input(
"Search for recipes:",
value=default_query,
placeholder="e.g., 'onion tomato pasta', 'strawberry dessert', etc."
)
col1, col2 = st.columns(2)
with col1:
num_results = st.slider("Number of results", 1, 15, 5)
with col2:
min_rating = st.slider("Minimum rating", 1.0, 5.0, 3.0, 0.1)
if st.button("🔍 Search Recipes") and query:
with st.spinner(f"Searching for '{query}'..."):
results = search_system.search_recipes(query, num_results, min_rating)
if results:
st.markdown(f"### Top {len(results)} recipe recommendations for: *'{query}'*")
st.markdown("<hr>", unsafe_allow_html=True)
for i, recipe in enumerate(results, 1):
steps_html = "".join([f"<li>{step.strip().capitalize()}</li>" for step in recipe.get("steps", [])])
description = recipe.get("description", "").strip().capitalize()
html_code = f"""
<div style="margin: 8px 0; padding: 8px; border-radius: 12px; background-color: #fdfdfd;
box-shadow: 0 2px 8px rgba(0,0,0,0.06); font-family: Arial, sans-serif;
border: 1px solid #e0e0e0;">
<div style="font-size: 18px; font-weight: bold; color: #333; margin-bottom: 8px;">
{i}. {recipe['name']}
</div>
<div style="margin: 4px 0 12px 0; font-size: 14px; color: #555;">
<b>{recipe['minutes']} min</b> &nbsp;&nbsp;|&nbsp;&nbsp;
<b>{recipe['n_steps']} steps</b> &nbsp;&nbsp;|&nbsp;&nbsp;
<b>{recipe['avg_rating']:.1f}/5.0</b>
<span style="font-size: 12px; color: #999;">({recipe['num_ratings']} ratings)</span>
</div>
<div style="margin-bottom: 8px; font-size: 14px;">
<b>Match Score:</b>
<span style="color: #007acc; font-weight: bold;">{recipe['similarity_score']:.1%}</span>
<span style="font-size: 12px; color: #888;">(query match)</span>
</div>
<div style="margin-bottom: 8px;">
<b>Tags:</b><br>
<div style="margin-top: 8px;">
{" ".join([f"<span style='background:#eee;padding:4px 8px;border-radius:6px;margin:2px;display:inline-block;font-size:12px'>{tag}</span>" for tag in recipe['tags']])}
</div>
</div>
<div style="margin-bottom: 8px;">
<b>Ingredients:</b><br>
<span style="font-size: 13px; color: #444; display: block;">
{', '.join(recipe['ingredients'][:8])}{'...' if len(recipe['ingredients']) > 8 else ''}
</span>
</div>
{f"<div style='margin-top: 10px; font-size: 13px; color: #333;'><b>Description:</b><br><span>{description}</span></div>" if description else ""}
{f"<div style='margin-top: 10px; font-size: 13px;'><b>Steps:</b><ol style='margin: 6px 0 0 18px; padding: 0;'>{steps_html}</ol></div>" if steps_html else ""}
</div>
"""
components.html(html_code, height=340, scrolling=True)
else:
st.warning(f"No recipes found for '{query}' with a minimum rating of {min_rating}/5.0.")
render_layout(classification_and_recommendation_page)