Spaces:
Paused
Paused
File size: 3,798 Bytes
37acd6d 2d78591 e79dd51 21e33f9 2d78591 21e33f9 37acd6d 2d78591 e79dd51 2d78591 f00a1a5 77e4720 b5f38ca dd06693 21e33f9 1f7e24e e10a399 2d78591 b5f38ca e79dd51 b5f38ca e79dd51 2d78591 21e33f9 b5f38ca e10a399 e50afa4 c40c366 e50afa4 21e33f9 e50afa4 21e33f9 e10a399 e50afa4 b5f38ca e10a399 b5f38ca 2d78591 f00a1a5 21e33f9 e50afa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import gradio as gr
from gradio.inputs import Textbox
import re
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
from datasets import load_dataset
import torch
import random
import string
import soundfile as sf
import boto3
from io import BytesIO
import os
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
S3_BUCKET_NAME = os.getenv("BUCKET_NAME")
device = "cuda" if torch.cuda.is_available() else "cpu"
# load the processor
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
# load the model
model = SpeechT5ForTextToSpeech.from_pretrained(
"microsoft/speecht5_tts").to(device)
# load the vocoder, that is the voice encoder
vocoder = SpeechT5HifiGan.from_pretrained(
"microsoft/speecht5_hifigan").to(device)
# we load this dataset to get the speaker embeddings
embeddings_dataset = load_dataset(
"Matthijs/cmu-arctic-xvectors", split="validation")
# speaker ids from the embeddings dataset
speakers = {
'awb': 0, # Scottish male
'bdl': 1138, # US male
'clb': 2271, # US female
'jmk': 3403, # Canadian male
'ksp': 4535, # Indian male
'rms': 5667, # US male
'slt': 6799 # US female
}
def generateAudio(text_to_audio, s3_save_as, key_id):
if AWS_ACCESS_KEY_ID != key_id:
return "not permition"
s3_save_as = '-'.join(s3_save_as.split()) + ".wav"
def cut_text(text, max_tokens=500):
# Remove non-alphanumeric characters, except periods and commas
text = re.sub(r"[^\w\s.,]", "", text)
# Replace multiple spaces with a single space
text = re.sub(r"\s{2,}", " ", text)
# Remove line breaks
text = re.sub(r"\n", " ", text)
return text
def save_audio_to_s3(audio):
# Create an instance of the S3 client
s3 = boto3.client('s3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY)
# Full path of the file in the bucket
s3_key = "public/" + s3_save_as
# Upload the audio file to the S3 bucket
s3.upload_fileobj(audio, S3_BUCKET_NAME, s3_key)
def save_text_to_speech(text, speaker=None):
# Preprocess text and recortar
text = cut_text(text, max_tokens=500)
# Divide el texto en segmentos de 30 palabras
palabras = text.split()
segmentos = [' '.join(palabras[i:i+30]) for i in range(0, len(palabras), 30)]
# Generar audio para cada segmento y combinarlos
audio_segments = []
for segment in segmentos:
inputs = processor(text=segment, return_tensors="pt").to(device)
if speaker is not None:
speaker_embeddings = torch.tensor(embeddings_dataset[speaker]["xvector"]).unsqueeze(0).to(device)
else:
speaker_embeddings = torch.randn((1, 512)).to(device)
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
audio_segments.append(speech)
combined_audio = torch.cat(audio_segments, dim=0)
# Crear objeto BytesIO para almacenar el audio
audio_buffer = BytesIO()
sf.write(audio_buffer, combined_audio.cpu().numpy(), samplerate=16000, format='WAV')
audio_buffer.seek(0)
# Guardar el audio combinado en S3
save_audio_to_s3(audio_buffer)
save_text_to_speech(text_to_audio, 2271)
return s3_save_as
iface = gr.Interface(fn=generateAudio, inputs=[Textbox(label="text_to_audio"), Textbox(label="S3url"), Textbox(label="aws_key_id")], outputs="text", title="Text-to-Audio")
iface.launch()
|