|
|
|
import os
|
|
import numpy as np
|
|
import cv2
|
|
from keras.models import Sequential
|
|
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D, Input
|
|
from keras.optimizers import Adam
|
|
from keras_preprocessing.image import ImageDataGenerator
|
|
from keras.callbacks import EarlyStopping, ModelCheckpoint
|
|
|
|
|
|
base_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '../'))
|
|
train_dir = os.path.join(base_dir, 'Data/train')
|
|
val_dir = os.path.join(base_dir, 'Data/test')
|
|
|
|
|
|
train_datagen = ImageDataGenerator(
|
|
rescale=1./255,
|
|
rotation_range=30,
|
|
zoom_range=0.2,
|
|
horizontal_flip=True,
|
|
shear_range=0.2,
|
|
width_shift_range=0.2,
|
|
height_shift_range=0.2
|
|
)
|
|
val_datagen = ImageDataGenerator(rescale=1./255)
|
|
|
|
train_generator = train_datagen.flow_from_directory(
|
|
train_dir, target_size=(48, 48), batch_size=64, color_mode='grayscale', class_mode='categorical')
|
|
|
|
validation_generator = val_datagen.flow_from_directory(
|
|
val_dir, target_size=(48, 48), batch_size=64, color_mode='grayscale', class_mode='categorical')
|
|
|
|
|
|
emotion_model = Sequential()
|
|
emotion_model.add(Input(shape=(48, 48, 1)))
|
|
emotion_model.add(Conv2D(32, kernel_size=(3, 3), activation='relu'))
|
|
emotion_model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
|
|
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
|
|
emotion_model.add(Dropout(0.25))
|
|
|
|
emotion_model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
|
|
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
|
|
emotion_model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
|
|
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
|
|
emotion_model.add(Dropout(0.25))
|
|
|
|
emotion_model.add(Flatten())
|
|
emotion_model.add(Dense(1024, activation='relu'))
|
|
emotion_model.add(Dropout(0.5))
|
|
emotion_model.add(Dense(7, activation='softmax'))
|
|
|
|
|
|
emotion_model.compile(loss='categorical_crossentropy', optimizer=Adam(learning_rate=0.0001), metrics=['accuracy'])
|
|
|
|
|
|
callbacks = [
|
|
EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True),
|
|
ModelCheckpoint('best_model.h5', monitor='val_loss', save_best_only=True)
|
|
]
|
|
|
|
|
|
emotion_model_info = emotion_model.fit(
|
|
train_generator,
|
|
epochs=50,
|
|
validation_data=validation_generator,
|
|
callbacks=callbacks
|
|
)
|
|
|
|
|
|
emotion_model.save("emotion_model.keras")
|
|
|
|
|