Prime810's picture
Upload 17 files
111e299 verified
raw
history blame
2.55 kB
# Importing Libraries
import os
import numpy as np
import cv2
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D, Input
from keras.optimizers import Adam
from keras_preprocessing.image import ImageDataGenerator
from keras.callbacks import EarlyStopping, ModelCheckpoint
# Define paths using os.path for portability
base_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '../'))
train_dir = os.path.join(base_dir, 'Data/train')
val_dir = os.path.join(base_dir, 'Data/test')
# Data augmentation and rescaling
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=30,
zoom_range=0.2,
horizontal_flip=True,
shear_range=0.2,
width_shift_range=0.2,
height_shift_range=0.2
)
val_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_dir, target_size=(48, 48), batch_size=64, color_mode='grayscale', class_mode='categorical')
validation_generator = val_datagen.flow_from_directory(
val_dir, target_size=(48, 48), batch_size=64, color_mode='grayscale', class_mode='categorical')
# Building the Convolutional Network Architecture
emotion_model = Sequential()
emotion_model.add(Input(shape=(48, 48, 1)))
emotion_model.add(Conv2D(32, kernel_size=(3, 3), activation='relu'))
emotion_model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
emotion_model.add(Dropout(0.25))
emotion_model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
emotion_model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
emotion_model.add(Dropout(0.25))
emotion_model.add(Flatten())
emotion_model.add(Dense(1024, activation='relu'))
emotion_model.add(Dropout(0.5))
emotion_model.add(Dense(7, activation='softmax'))
# Compile the model
emotion_model.compile(loss='categorical_crossentropy', optimizer=Adam(learning_rate=0.0001), metrics=['accuracy'])
# Define callbacks
callbacks = [
EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True),
ModelCheckpoint('best_model.h5', monitor='val_loss', save_best_only=True)
]
# Train the model
emotion_model_info = emotion_model.fit(
train_generator,
epochs=50,
validation_data=validation_generator,
callbacks=callbacks
)
# Save the full model
emotion_model.save("emotion_model.keras")