Transcript_PDF / app.py
RamAnanth1's picture
Update app.py
d1de822
raw
history blame
3.15 kB
import gradio as gr
import torch
import whisper
import requests
from pytube import YouTube
### β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
title="Transcript PDF"
### β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
whisper_model = whisper.load_model("medium")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def transcribe(audio):
print("""
β€”
Sending audio to Whisper ...
β€”
""")
audio = whisper.load_audio(audio)
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device)
_, probs = whisper_model.detect_language(mel)
transcript_options = whisper.DecodingOptions(task="transcribe", fp16 = False)
translate_options = whisper.DecodingOptions(task="translate", fp16 = False)
transcription = whisper.decode(whisper_model, mel, transcript_options)
translation = whisper.decode(whisper_model, mel, translate_options)
print("Language Spoken: " + transcription.language)
print("Transcript: " + transcription.text)
print("Translated: " + translation.text)
return transcription.text
def transcribe_upload(audio):
return transcribe(audio)
def transcribe_yt(link):
yt = YouTube(link)
path = yt.streams.filter(only_audio=True)[0].download(filename="audio.mp3")
return transcribe(path)
with gr.Blocks(css = css) as demo:
gr.Markdown("""
## Multi-lingual Transcript Generator
""")
gr.HTML('''
<p style="margin-bottom: 10px">
Save Transcripts of videos as PDF with the help of Whisper, which is a general-purpose speech recognition model released by OpenAI that can perform multilingual speech recognition as well as speech translation and language identification.
</p>
''')
with gr.Column():
#gr.Markdown(""" ### Record audio """)
with gr.Tab("Youtube Link"):
yt_input = gr.Textbox(label = 'Youtube Link')
transcribe_audio_yt = gr.Button('Transcribe')
with gr.Tab("Upload Podcast as File"):
audio_input_u = gr.Audio(label = 'Upload Audio',source="upload",type="filepath")
transcribe_audio_u = gr.Button('Transcribe')
with gr.Row():
transcript_output = gr.Textbox(label="Transcription in the language spoken", lines = 20)
summary_output = gr.Textbox(label = "English Summary", lines = 10)
transcribe_audio_yt.click(transcribe_yt, inputs = yt_input, outputs = [transcript_output, summary_output])
transcribe_audio_u.click(transcribe_upload, inputs = audio_input_u, outputs = [transcript_output,summary_output])
gr.HTML('''
<div class="footer">
<p>Whisper Model by <a href="https://github.com/openai/whisper" style="text-decoration: underline;" target="_blank">OpenAI</a>
</p>
</div>
''')
demo.queue()
demo.launch()