Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import whisper | |
from whisper.utils import write_vtt | |
import requests | |
from pytube import YouTube | |
### ββββββββββββββββββββββββββββββββββββββββ | |
title="Transcript PDF" | |
### ββββββββββββββββββββββββββββββββββββββββ | |
whisper_model = whisper.load_model("medium") | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
def transcribe(audio): | |
print(""" | |
β | |
Sending audio to Whisper ... | |
β | |
""") | |
#audio = whisper.load_audio(audio) | |
#audio = whisper.pad_or_trim(audio) | |
#mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device) | |
#_, probs = whisper_model.detect_language(mel) | |
#transcript_options = whisper.DecodingOptions(task="transcribe", fp16 = False) | |
#translate_options = whisper.DecodingOptions(task="translate", fp16 = False) | |
#transcription = whisper.decode(whisper_model, mel, transcript_options) | |
#translation = whisper.decode(whisper_model, mel, translate_options) | |
result = whisper_model.transcribe(audio) | |
#print("Language Spoken: " + transcription.language) | |
#print("Transcript: " + transcription.text) | |
#print("Translated: " + translation.text) | |
with open('sub.vtt', "w") as f: | |
write_vtt(result["segments"], file=f) | |
return result["text"], "sub.vtt" | |
def transcribe_upload(audio): | |
return transcribe(audio) | |
def transcribe_yt(link): | |
yt = YouTube(link) | |
path = yt.streams.filter(only_audio=True)[0].download(filename="audio.mp3") | |
return transcribe(path) | |
css = """ | |
.gradio-container { | |
font-family: 'IBM Plex Sans', sans-serif; | |
} | |
.gr-button { | |
color: white; | |
border-color: black; | |
background: black; | |
} | |
input[type='range'] { | |
accent-color: black; | |
} | |
.dark input[type='range'] { | |
accent-color: #dfdfdf; | |
} | |
.container { | |
max-width: 880px; | |
margin: auto; | |
padding-top: 1.5rem; | |
} | |
#gallery { | |
min-height: 22rem; | |
margin-bottom: 15px; | |
margin-left: auto; | |
margin-right: auto; | |
border-bottom-right-radius: .5rem !important; | |
border-bottom-left-radius: .5rem !important; | |
} | |
#gallery>div>.h-full { | |
min-height: 20rem; | |
} | |
.details:hover { | |
text-decoration: underline; | |
} | |
.gr-button { | |
white-space: nowrap; | |
} | |
.gr-button:focus { | |
border-color: rgb(147 197 253 / var(--tw-border-opacity)); | |
outline: none; | |
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); | |
--tw-border-opacity: 1; | |
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); | |
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); | |
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); | |
--tw-ring-opacity: .5; | |
} | |
#advanced-btn { | |
font-size: .7rem !important; | |
line-height: 19px; | |
margin-top: 12px; | |
margin-bottom: 12px; | |
padding: 2px 8px; | |
border-radius: 14px !important; | |
} | |
#advanced-options { | |
display: none; | |
margin-bottom: 20px; | |
} | |
.footer { | |
margin-bottom: 45px; | |
margin-top: 35px; | |
text-align: center; | |
border-bottom: 1px solid #e5e5e5; | |
} | |
.footer>p { | |
font-size: .8rem; | |
display: inline-block; | |
padding: 0 10px; | |
transform: translateY(10px); | |
background: white; | |
} | |
.dark .footer { | |
border-color: #303030; | |
} | |
.dark .footer>p { | |
background: #0b0f19; | |
} | |
""" | |
with gr.Blocks(css = css) as demo: | |
gr.Markdown(""" | |
## Transcript Generator | |
""") | |
gr.HTML(''' | |
<p style="margin-bottom: 10px"> | |
Save Transcripts of videos as PDF with the help of Whisper, which is a general-purpose speech recognition model released by OpenAI that can perform multilingual speech recognition as well as speech translation and language identification. | |
</p> | |
''') | |
with gr.Column(): | |
#gr.Markdown(""" ### Record audio """) | |
with gr.Tab("Youtube Link"): | |
yt_input = gr.Textbox(label = 'Youtube Link') | |
transcribe_audio_yt = gr.Button('Transcribe') | |
with gr.Tab("Upload as File"): | |
audio_input_u = gr.Audio(label = 'Upload Audio',source="upload",type="filepath") | |
transcribe_audio_u = gr.Button('Transcribe') | |
with gr.Row(): | |
transcript_output = gr.Textbox(label="Transcript", lines = 20) | |
transcript_file = gr.File() | |
transcribe_audio_yt.click(transcribe_yt, inputs = yt_input, outputs = [transcript_output, transcript_file]) | |
transcribe_audio_u.click(transcribe_upload, inputs = audio_input_u, outputs = [transcript_output, transcript_file]) | |
gr.HTML(''' | |
<div class="footer"> | |
<p>Whisper Model by <a href="https://github.com/openai/whisper" style="text-decoration: underline;" target="_blank">OpenAI</a> | |
</p> | |
</div> | |
''') | |
demo.queue() | |
demo.launch() |