File size: 37,336 Bytes
7bf325d
8e34de3
524b56d
929cfb4
524b56d
 
 
f533950
524b56d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36f7a03
 
 
524b56d
 
36f7a03
 
 
8e34de3
 
36f7a03
 
524b56d
8e34de3
 
24a2114
 
 
9a806ac
524b56d
9a806ac
 
524b56d
9a806ac
 
 
 
 
 
 
 
 
 
 
524b56d
9a806ac
 
 
 
 
 
 
524b56d
9a806ac
 
 
 
 
524b56d
9a806ac
 
929cfb4
 
524b56d
 
 
 
 
 
6c6550e
524b56d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
929cfb4
524b56d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
929cfb4
524b56d
929cfb4
 
 
524b56d
7138f76
 
524b56d
7138f76
 
524b56d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7138f76
524b56d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7138f76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
524b56d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7138f76
 
524b56d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
929cfb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7138f76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
929cfb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7138f76
524b56d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7138f76
524b56d
d143368
524b56d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7138f76
7303519
 
 
7138f76
 
7303519
 
 
7138f76
7303519
 
 
 
 
7138f76
 
7303519
7138f76
7303519
 
 
 
 
 
7138f76
 
7303519
7138f76
7303519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7138f76
7303519
 
 
 
 
 
7138f76
7303519
 
 
 
 
c435293
e66f533
7138f76
 
 
f7e9b98
7138f76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
524b56d
8e34de3
36f7a03
 
fe68698
 
524b56d
8e34de3
7138f76
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
import gradio as gr
from ui.dataset_input import create_dataset_input, load_example_dataset
from ui.analysis_screen import create_analysis_screen, process_analysis_request
from visualization.bow_visualizer import process_and_visualize_analysis
import nltk
import os
import json

# Download necessary NLTK resources function remains unchanged
def download_nltk_resources():
    """Download required NLTK resources if not already downloaded"""
    try:
        # Create nltk_data directory in the user's home directory if it doesn't exist
        nltk_data_path = os.path.expanduser("~/nltk_data")
        os.makedirs(nltk_data_path, exist_ok=True)
        
        # Add this path to NLTK's data path
        nltk.data.path.append(nltk_data_path)
        
        # Download required resources
        resources = ['punkt', 'wordnet', 'stopwords', 'punkt_tab']
        for resource in resources:
            try:
                # Different resources can be in different directories in NLTK
                locations = [
                    f'tokenizers/{resource}',
                    f'corpora/{resource}',
                    f'taggers/{resource}',
                    f'{resource}'
                ]
                
                found = False
                for location in locations:
                    try:
                        nltk.data.find(location)
                        print(f"Resource {resource} already downloaded")
                        found = True
                        break
                    except LookupError:
                        continue
                
                if not found:
                    print(f"Downloading {resource}...")
                    nltk.download(resource, quiet=True)
            except Exception as e:
                print(f"Error with resource {resource}: {e}")
        
        print("NLTK resources check completed")
    except Exception as e:
        print(f"Error downloading NLTK resources: {e}")

def create_app():
    """
    Create a streamlined Gradio app for dataset input and Bag of Words analysis. 
    
    Returns:
        gr.Blocks: The Gradio application
    """
    with gr.Blocks(title="LLM Response Comparator") as app:
        # Application state to share data between tabs
        dataset_state = gr.State({})
        analysis_results_state = gr.State({})
        
        # Dataset Input Tab
        with gr.Tab("Dataset Input"):
            # Filter out files that start with 'summary' for the Dataset Input tab
            dataset_files = [f for f in os.listdir("dataset") 
                             if not f.startswith("summary-") and os.path.isfile(os.path.join("dataset", f))]
            dataset_inputs, example_dropdown, load_example_btn, create_btn, prompt, response1, model1, response2, model2 = create_dataset_input()
            
            # Add status indicator to show when dataset is created
            dataset_status = gr.Markdown("*No dataset loaded*")
            
            # Load example dataset
            load_example_btn.click(
                fn=load_example_dataset,
                inputs=[example_dropdown],
                outputs=[prompt, response1, model1, response2, model2]  # Update all field values
            )

            # Save dataset to state and update status
            def create_dataset(p, r1, m1, r2, m2):
                if not p or not r1 or not r2:
                    return {}, "❌ **Error:** Please fill in at least the prompt and both responses"
                
                dataset = {
                    "entries": [
                        {"prompt": p, "response": r1, "model": m1 or "Model 1"},
                        {"prompt": p, "response": r2, "model": m2 or "Model 2"}
                    ]
                }
                return dataset, "βœ… **Dataset created successfully!** You can now go to the Analysis tab"
                
            create_btn.click(
                fn=create_dataset,
                inputs=[prompt, response1, model1, response2, model2],
                outputs=[dataset_state, dataset_status]
            )
        
        # Analysis Tab
        with gr.Tab("Analysis"):
            # Use create_analysis_screen to get UI components including visualization container
            analysis_options, analysis_params, run_analysis_btn, analysis_output, ngram_n, topic_count = create_analysis_screen()
            
            # Pre-create visualization components (initially hidden)
            visualization_area_visible = gr.Checkbox(value=False, visible=False, label="Visualization Visible")
            analysis_title = gr.Markdown("## Analysis Results", visible=False)
            prompt_title = gr.Markdown(visible=False)
            models_compared = gr.Markdown(visible=False)
            
            # Container for model 1 words
            model1_title = gr.Markdown(visible=False)
            model1_words = gr.Markdown(visible=False)
            
            # Container for model 2 words
            model2_title = gr.Markdown(visible=False)
            model2_words = gr.Markdown(visible=False)
            
            # Similarity metrics
            similarity_metrics_title = gr.Markdown("### Similarity Metrics", visible=False)
            similarity_metrics = gr.Markdown(visible=False)
            
            # Status or error message area
            status_message_visible = gr.Checkbox(value=False, visible=False, label="Status Message Visible")
            status_message = gr.Markdown(visible=False)
            
            # Define a helper function to extract parameter values and run the analysis
            def run_analysis(dataset, selected_analysis, ngram_n, topic_count):
                try:
                    if not dataset or "entries" not in dataset or not dataset["entries"]:
                        return (
                            {},  # analysis_results_state
                            False,  # analysis_output visibility
                            False,  # visualization_area_visible
                            gr.update(visible=False),  # analysis_title
                            gr.update(visible=False),  # prompt_title
                            gr.update(visible=False),  # models_compared
                            gr.update(visible=False),  # model1_title
                            gr.update(visible=False),  # model1_words
                            gr.update(visible=False),  # model2_title
                            gr.update(visible=False),  # model2_words
                            gr.update(visible=False),  # similarity_metrics_title
                            gr.update(visible=False),  # similarity_metrics
                            True,  # status_message_visible
                            gr.update(visible=True, value="❌ **Error:** No dataset loaded. Please create or load a dataset first.")  # status_message
                        )
                    
                    parameters = {
                        "bow_top": 25,  # Default fixed value for Bag of Words
                        "ngram_n": ngram_n,
                        "ngram_top": 10,  # Default fixed value for N-gram analysis
                        "topic_count": topic_count,
                        "bias_methods": ["partisan"]  # Default to partisan leaning only
                    }
                    print(f"Running analysis with selected type: {selected_analysis}")
                    print("Parameters:", parameters)
                    
                    # Process the analysis request - passing selected_analysis as a string
                    analysis_results, _ = process_analysis_request(dataset, selected_analysis, parameters)
                    
                    # If there's an error or no results
                    if not analysis_results or "analyses" not in analysis_results or not analysis_results["analyses"]:
                        return (
                            analysis_results,
                            False,
                            False,
                            gr.update(visible=False),
                            gr.update(visible=False),
                            gr.update(visible=False),
                            gr.update(visible=False),
                            gr.update(visible=False),
                            gr.update(visible=False),
                            gr.update(visible=False),
                            gr.update(visible=False),
                            gr.update(visible=False),
                            True,
                            gr.update(visible=True, value="❌ **No results found.** Try a different analysis option.")
                        )
                    
                    # Extract information to display in components
                    prompt = list(analysis_results["analyses"].keys())[0]
                    analyses = analysis_results["analyses"][prompt]
                    
                    # Initialize visualization components visibilities and contents
                    visualization_area_visible = False
                    prompt_title_visible = False
                    prompt_title_value = ""
                    models_compared_visible = False
                    models_compared_value = ""
                    
                    model1_title_visible = False
                    model1_title_value = ""
                    model1_words_visible = False
                    model1_words_value = ""
                    
                    model2_title_visible = False
                    model2_title_value = ""
                    model2_words_visible = False
                    model2_words_value = ""
                    
                    similarity_title_visible = False
                    similarity_metrics_visible = False
                    similarity_metrics_value = ""
                    
                    # Check for messages from placeholder analyses
                    if "message" in analyses:
                        return (
                            analysis_results,
                            False,
                            False,
                            gr.update(visible=False),
                            gr.update(visible=False),
                            gr.update(visible=False),
                            gr.update(visible=False),
                            gr.update(visible=False),
                            gr.update(visible=False),
                            gr.update(visible=False),
                            gr.update(visible=False),
                            gr.update(visible=False),
                            True,
                            gr.update(visible=True, value=f"ℹ️ **{analyses['message']}**")
                        )
                    
                    # Process based on the selected analysis type
                    if selected_analysis == "Bag of Words" and "bag_of_words" in analyses:
                        visualization_area_visible = True
                        bow_results = analyses["bag_of_words"]
                        models = bow_results.get("models", [])
                        
                        if len(models) >= 2:
                            prompt_title_visible = True
                            prompt_title_value = f"## Analysis of Prompt: \"{prompt[:100]}...\""
                            
                            models_compared_visible = True
                            models_compared_value = f"### Comparing responses from {models[0]} and {models[1]}"
                            
                            # Extract and format information for display
                            model1_name = models[0]
                            model2_name = models[1]
                            
                            # Format important words for each model
                            important_words = bow_results.get("important_words", {})
                            
                            if model1_name in important_words:
                                model1_title_visible = True
                                model1_title_value = f"#### Top Words Used by {model1_name}"
                                
                                word_list = [f"**{item['word']}** ({item['count']})" for item in important_words[model1_name][:10]]
                                model1_words_visible = True
                                model1_words_value = ", ".join(word_list)
                            
                            if model2_name in important_words:
                                model2_title_visible = True
                                model2_title_value = f"#### Top Words Used by {model2_name}"
                                
                                word_list = [f"**{item['word']}** ({item['count']})" for item in important_words[model2_name][:10]]
                                model2_words_visible = True
                                model2_words_value = ", ".join(word_list)
                            
                            # Format similarity metrics
                            comparisons = bow_results.get("comparisons", {})
                            comparison_key = f"{model1_name} vs {model2_name}"

                            if comparison_key in comparisons:
                                metrics = comparisons[comparison_key]
                                cosine = metrics.get("cosine_similarity", 0)
                                jaccard = metrics.get("jaccard_similarity", 0)
                                semantic = metrics.get("semantic_similarity", 0)
                                common_words = metrics.get("common_word_count", 0)
                                
                                similarity_title_visible = True
                                similarity_metrics_visible = True
                                similarity_metrics_value = f"""
                                - **Cosine Similarity**: {cosine:.2f} (higher means more similar word frequency patterns)
                                - **Jaccard Similarity**: {jaccard:.2f} (higher means more word overlap)
                                - **Semantic Similarity**: {semantic:.2f} (higher means more similar meaning)
                                - **Common Words**: {common_words} words appear in both responses
                                """
                                
                    # Check for N-gram analysis
                    elif selected_analysis == "N-gram Analysis" and "ngram_analysis" in analyses:
                        visualization_area_visible = True
                        ngram_results = analyses["ngram_analysis"]
                        models = ngram_results.get("models", [])
                        ngram_size = ngram_results.get("ngram_size", 2)
                        size_name = "Unigrams" if ngram_size == 1 else f"{ngram_size}-grams"
                        
                        if len(models) >= 2:
                            prompt_title_visible = True
                            prompt_title_value = f"## Analysis of Prompt: \"{prompt[:100]}...\""
                            
                            models_compared_visible = True
                            models_compared_value = f"### {size_name} Analysis: Comparing responses from {models[0]} and {models[1]}"
                            
                            # Extract and format information for display
                            model1_name = models[0]
                            model2_name = models[1]
                            
                            # Format important n-grams for each model
                            important_ngrams = ngram_results.get("important_ngrams", {})
                            
                            if model1_name in important_ngrams:
                                model1_title_visible = True
                                model1_title_value = f"#### Top {size_name} Used by {model1_name}"
                                
                                ngram_list = [f"**{item['ngram']}** ({item['count']})" for item in important_ngrams[model1_name][:10]]
                                model1_words_visible = True
                                model1_words_value = ", ".join(ngram_list)
                            
                            if model2_name in important_ngrams:
                                model2_title_visible = True
                                model2_title_value = f"#### Top {size_name} Used by {model2_name}"
                                
                                ngram_list = [f"**{item['ngram']}** ({item['count']})" for item in important_ngrams[model2_name][:10]]
                                model2_words_visible = True
                                model2_words_value = ", ".join(ngram_list)
                            
                            # Format similarity metrics if available
                            if "comparisons" in ngram_results:
                                comparison_key = f"{model1_name} vs {model2_name}"
                                
                                if comparison_key in ngram_results["comparisons"]:
                                    metrics = ngram_results["comparisons"][comparison_key]
                                    common_count = metrics.get("common_ngram_count", 0)
                                    
                                    similarity_title_visible = True
                                    similarity_metrics_visible = True
                                    similarity_metrics_value = f"""
                                    - **Common {size_name}**: {common_count} {size_name.lower()} appear in both responses
                                    """
                    
                    # Check for Topic Modeling analysis
                    elif selected_analysis == "Topic Modeling" and "topic_modeling" in analyses:
                        visualization_area_visible = True
                        topic_results = analyses["topic_modeling"]
                        models = topic_results.get("models", [])
                        method = topic_results.get("method", "lda").upper()
                        n_topics = topic_results.get("n_topics", 3)
                        
                        if len(models) >= 2:
                            prompt_title_visible = True
                            prompt_title_value = f"## Analysis of Prompt: \"{prompt[:100]}...\""
                            
                            models_compared_visible = True
                            models_compared_value = f"### Topic Modeling Analysis ({method}, {n_topics} topics)"
                            
                            # Extract and format topic information
                            topics = topic_results.get("topics", [])
                            
                            if topics:
                                # Format topic info for display
                                topic_info = []
                                for topic in topics[:3]:  # Show first 3 topics
                                    topic_id = topic.get("id", 0)
                                    words = topic.get("words", [])[:5]  # Top 5 words per topic
                                    
                                    if words:
                                        topic_info.append(f"**Topic {topic_id+1}**: {', '.join(words)}")
                                
                                if topic_info:
                                    model1_title_visible = True
                                    model1_title_value = "#### Discovered Topics"
                                    model1_words_visible = True
                                    model1_words_value = "\n".join(topic_info)
                            
                            # Get topic distributions for models
                            model_topics = topic_results.get("model_topics", {})
                            
                            if model_topics:
                                model1_name = models[0]
                                model2_name = models[1]
                                
                                # Format topic distribution info
                                if model1_name in model_topics and model2_name in model_topics:
                                    model2_title_visible = True
                                    model2_title_value = "#### Topic Distribution"
                                    model2_words_visible = True
                                    
                                    # Simple distribution display
                                    dist1 = model_topics[model1_name]
                                    dist2 = model_topics[model2_name]
                                    
                                    model2_words_value = f"""
                                    **{model1_name}**: {', '.join([f"Topic {i+1}: {v:.2f}" for i, v in enumerate(dist1[:3])])}
                                    
                                    **{model2_name}**: {', '.join([f"Topic {i+1}: {v:.2f}" for i, v in enumerate(dist2[:3])])}
                                    """
                                    
                            # Add similarity metrics if available
                            comparisons = topic_results.get("comparisons", {})
                            if comparisons:
                                comparison_key = f"{model1_name} vs {model2_name}"
                                
                                if comparison_key in comparisons:
                                    metrics = comparisons[comparison_key]
                                    js_div = metrics.get("js_divergence", 0)
                                    
                                    similarity_title_visible = True
                                    similarity_metrics_visible = True
                                    similarity_metrics_value = f"""
                                    - **Topic Distribution Divergence**: {js_div:.4f} (lower means more similar topic distributions)
                                    """
                    
                    # Check for Classifier analysis
                    elif selected_analysis == "Classifier" and "classifier" in analyses:
                        visualization_area_visible = True
                        classifier_results = analyses["classifier"]
                        models = classifier_results.get("models", [])
                        
                        if len(models) >= 2:
                            prompt_title_visible = True
                            prompt_title_value = f"## Analysis of Prompt: \"{prompt[:100]}...\""
                            
                            models_compared_visible = True
                            models_compared_value = f"### Classifier Analysis for {models[0]} and {models[1]}"
                            
                            # Extract and format classifier information
                            model1_name = models[0]
                            model2_name = models[1]
                            
                            # Display classifications for each model
                            classifications = classifier_results.get("classifications", {})
                            
                            if classifications:
                                model1_title_visible = True
                                model1_title_value = f"#### Classification Results"
                                model1_words_visible = True
                                
                                model1_results = classifications.get(model1_name, {})
                                model2_results = classifications.get(model2_name, {})
                                
                                model1_words_value = f"""
                                **{model1_name}**:
                                - Formality: {model1_results.get('formality', 'N/A')}
                                - Sentiment: {model1_results.get('sentiment', 'N/A')}
                                - Complexity: {model1_results.get('complexity', 'N/A')}
                                
                                **{model2_name}**:
                                - Formality: {model2_results.get('formality', 'N/A')}
                                - Sentiment: {model2_results.get('sentiment', 'N/A')}
                                - Complexity: {model2_results.get('complexity', 'N/A')}
                                """
                                
                                # Show comparison
                                model2_title_visible = True
                                model2_title_value = f"#### Classification Comparison"
                                model2_words_visible = True
                                
                                differences = classifier_results.get("differences", {})
                                model2_words_value = "\n".join([
                                    f"- **{category}**: {diff}" 
                                    for category, diff in differences.items()
                                ])

                    # Check for Bias Detection analysis
                    elif selected_analysis == "Bias Detection" and "bias_detection" in analyses:
                        visualization_area_visible = True
                        bias_results = analyses["bias_detection"]
                        models = bias_results.get("models", [])
                        
                        if len(models) >= 2:
                            prompt_title_visible = True
                            prompt_title_value = f"## Analysis of Prompt: \"{prompt[:100]}...\""
                            
                            models_compared_visible = True
                            models_compared_value = f"### Bias Analysis: Comparing responses from {models[0]} and {models[1]}"
                            
                            # Display comparative bias results
                            model1_name = models[0]
                            model2_name = models[1]
                            
                            if "comparative" in bias_results:
                                comparative = bias_results["comparative"]
                                
                                # Format summary for display
                                model1_title_visible = True
                                model1_title_value = "#### Bias Detection Summary"
                                model1_words_visible = True
                                
                                summary_parts = []
                                
                                # Add partisan comparison (focus on partisan leaning)
                                if "partisan" in comparative:
                                    part = comparative["partisan"]
                                    is_significant = part.get("significant", False)
                                    summary_parts.append(
                                        f"**Partisan Leaning**: {model1_name} appears {part.get(model1_name, 'N/A')}, " +
                                        f"while {model2_name} appears {part.get(model2_name, 'N/A')}. " +
                                        f"({'Significant' if is_significant else 'Minor'} difference)"
                                    )
                                
                                # Add overall assessment
                                if "overall" in comparative:
                                    overall = comparative["overall"]
                                    significant = overall.get("significant_bias_difference", False)
                                    summary_parts.append(
                                        f"**Overall Assessment**: " +
                                        f"Analysis shows a {overall.get('difference', 0):.2f}/1.0 difference in bias patterns. " +
                                        f"({'Significant' if significant else 'Minor'} overall bias difference)"
                                    )
                                
                                # Combine all parts
                                model1_words_value = "\n\n".join(summary_parts)
                                
                                # Format detailed term analysis
                                if (model1_name in bias_results and "partisan" in bias_results[model1_name] and
                                    model2_name in bias_results and "partisan" in bias_results[model2_name]):
                                    
                                    model2_title_visible = True
                                    model2_title_value = "#### Partisan Term Analysis"
                                    model2_words_visible = True
                                    
                                    m1_lib = bias_results[model1_name]["partisan"].get("liberal_terms", [])
                                    m1_con = bias_results[model1_name]["partisan"].get("conservative_terms", [])
                                    m2_lib = bias_results[model2_name]["partisan"].get("liberal_terms", [])
                                    m2_con = bias_results[model2_name]["partisan"].get("conservative_terms", [])
                                    
                                    model2_words_value = f"""
                                    **{model1_name}**:
                                    - Liberal terms: {', '.join(m1_lib) if m1_lib else 'None detected'}
                                    - Conservative terms: {', '.join(m1_con) if m1_con else 'None detected'}
                                    
                                    **{model2_name}**:
                                    - Liberal terms: {', '.join(m2_lib) if m2_lib else 'None detected'}
                                    - Conservative terms: {', '.join(m2_con) if m2_con else 'None detected'}
                                    """
                    
                    # If we don't have visualization data from any analysis
                    if not visualization_area_visible:
                        return (
                            analysis_results,
                            False,
                            False,
                            gr.update(visible=False),
                            gr.update(visible=False),
                            gr.update(visible=False),
                            gr.update(visible=False),
                            gr.update(visible=False),
                            gr.update(visible=False),
                            gr.update(visible=False),
                            gr.update(visible=False),
                            gr.update(visible=False),
                            True,
                            gr.update(visible=True, value="❌ **No visualization data found.** Make sure to select a valid analysis option.")
                        )

                    # Return all updated component values
                    return (
                        analysis_results,  # analysis_results_state
                        False,  # analysis_output visibility
                        True,   # visualization_area_visible
                        gr.update(visible=True),  # analysis_title
                        gr.update(visible=prompt_title_visible, value=prompt_title_value),  # prompt_title
                        gr.update(visible=models_compared_visible, value=models_compared_value),  # models_compared
                        gr.update(visible=model1_title_visible, value=model1_title_value),  # model1_title
                        gr.update(visible=model1_words_visible, value=model1_words_value),  # model1_words
                        gr.update(visible=model2_title_visible, value=model2_title_value),  # model2_title
                        gr.update(visible=model2_words_visible, value=model2_words_value),  # model2_words
                        gr.update(visible=similarity_title_visible),  # similarity_metrics_title
                        gr.update(visible=similarity_metrics_visible, value=similarity_metrics_value),  # similarity_metrics
                        False,  # status_message_visible
                        gr.update(visible=False)  # status_message
                    )
                
                except Exception as e:
                    import traceback
                    error_msg = f"Error in analysis: {str(e)}\n{traceback.format_exc()}"
                    print(error_msg)
                    
                    return (
                        {"error": error_msg},  # analysis_results_state
                        True,  # analysis_output visibility (show raw JSON for debugging)
                        False,  # visualization_area_visible
                        gr.update(visible=False),
                        gr.update(visible=False),
                        gr.update(visible=False),
                        gr.update(visible=False),
                        gr.update(visible=False),
                        gr.update(visible=False),
                        gr.update(visible=False),
                        gr.update(visible=False),
                        gr.update(visible=False),
                        True,  # status_message_visible
                        gr.update(visible=True, value=f"❌ **Error during analysis:**\n\n```\n{str(e)}\n```")  # status_message
                    )
                    
        # Add a Summary tab
        with gr.Tab("Summary"):
            gr.Markdown("## Analysis Summaries")
            
            with gr.Row():
                with gr.Column(scale=1):
                    # Get summary files from dataset directory
                    summary_files = [f for f in os.listdir("dataset") if f.startswith("summary-") and f.endswith(".txt")]
                    
                    summary_dropdown = gr.Dropdown(
                        choices=summary_files,
                        label="Select Summary",
                        info="Choose a summary to display",
                        value=summary_files[0] if summary_files else None
                    )
                    
                    load_summary_btn = gr.Button("Load Summary", variant="primary")
                
                with gr.Column(scale=3):
                    summary_content = gr.Textbox(
                        label="Summary Content",
                        lines=25,
                        max_lines=50,
                        interactive=False
                    )
                    
                    summary_status = gr.Markdown("*No summary loaded*")
            
            # Function to load summary content from file
            def load_summary_file(file_name):
                if not file_name:
                    return "", "*No summary selected*"
                    
                file_path = os.path.join("dataset", file_name)
                if os.path.exists(file_path):
                    try:
                        with open(file_path, 'r', encoding='utf-8') as f:
                            content = f.read()
                        return content, f"βœ… **Loaded summary**: {file_name}"
                    except Exception as e:
                        return "", f"❌ **Error loading summary**: {str(e)}"
                else:
                    return "", f"❌ **File not found**: {file_path}"
            
            # Connect the load button to the function
            load_summary_btn.click(
                fn=load_summary_file,
                inputs=[summary_dropdown],
                outputs=[summary_content, summary_status]
            )
            
            # Also load summary when dropdown changes
            summary_dropdown.change(
                fn=load_summary_file,
                inputs=[summary_dropdown],
                outputs=[summary_content, summary_status]
            )

        # Run analysis with proper parameters
        run_analysis_btn.click(
            fn=run_analysis,
            inputs=[dataset_state, analysis_options, ngram_n, topic_count],
            outputs=[
                analysis_results_state,
                analysis_output,
                visualization_area_visible,
                analysis_title,
                prompt_title,
                models_compared,
                model1_title,
                model1_words,
                model2_title,
                model2_words,
                similarity_metrics_title,
                similarity_metrics,
                status_message_visible,
                status_message
            ]
        )
    
    return app

if __name__ == "__main__":
    # Download required NLTK resources before launching the app
    download_nltk_resources()
    
    app = create_app()
    app.launch()