Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,015 Bytes
d6e219c f1948f2 4472a1d cc98c96 0ff864f 068dda5 f1948f2 068dda5 8e4d20e a9d4250 79936aa 068dda5 79936aa f1948f2 c303ab8 068dda5 c303ab8 4292d1b 43095bd 94e76c4 068dda5 94e76c4 23bb2d2 4472a1d 068dda5 4472a1d 43095bd 068dda5 43095bd 23bb2d2 068dda5 43095bd 068dda5 23bb2d2 068dda5 23bb2d2 068dda5 23bb2d2 068dda5 79936aa 068dda5 0ff864f 068dda5 947c124 068dda5 43095bd 068dda5 68ecdb1 068dda5 79936aa 068dda5 68ecdb1 068dda5 cc98c96 068dda5 43095bd 068dda5 43095bd 068dda5 43095bd 068dda5 5d7c4ba ab8c96f 068dda5 ab8c96f 4292d1b 068dda5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import gradio as gr
import torch
import numpy as np
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from transformers import RobertaForSequenceClassification, RobertaTokenizer
Load custom fine-tuned sentiment model
sentiment_model = AutoModelForSequenceClassification.from_pretrained(“SamanthaStorm/tether-sentiment”)
sentiment_tokenizer = AutoTokenizer.from_pretrained(“SamanthaStorm/tether-sentiment”)
Load abuse pattern model
model_name = “SamanthaStorm/abuse-pattern-detector-v2”
model = RobertaForSequenceClassification.from_pretrained(model_name, trust_remote_code=True)
tokenizer = RobertaTokenizer.from_pretrained(model_name, trust_remote_code=True)
LABELS = [
“gaslighting”, “mockery”, “dismissiveness”, “control”, “guilt_tripping”, “apology_baiting”, “blame_shifting”, “projection”,
“contradictory_statements”, “manipulation”, “deflection”, “insults”, “obscure_formal”, “recovery_phase”, “non_abusive”,
“suicidal_threat”, “physical_threat”, “extreme_control”
]
THRESHOLDS = {
“gaslighting”: 0.25, “mockery”: 0.15, “dismissiveness”: 0.30, “control”: 0.43, “guilt_tripping”: 0.19,
“apology_baiting”: 0.45, “blame_shifting”: 0.23, “projection”: 0.50, “contradictory_statements”: 0.25,
“manipulation”: 0.25, “deflection”: 0.30, “insults”: 0.34, “obscure_formal”: 0.25, “recovery_phase”: 0.25,
“non_abusive”: 2.0, “suicidal_threat”: 0.45, “physical_threat”: 0.02, “extreme_control”: 0.36
}
PATTERN_LABELS = LABELS[:15]
DANGER_LABELS = LABELS[15:18]
EXPLANATIONS = {
“gaslighting”: “Gaslighting involves making someone question their own reality or perceptions…”,
“blame_shifting”: “Blame-shifting is when one person redirects the responsibility…”,
“projection”: “Projection involves accusing the victim of behaviors the abuser exhibits.”,
“dismissiveness”: “Dismissiveness is belittling or disregarding another person’s feelings.”,
“mockery”: “Mockery ridicules someone in a hurtful, humiliating way.”,
“recovery_phase”: “Recovery phase dismisses someone’s emotional healing process.”,
“insults”: “Insults are derogatory remarks aimed at degrading someone.”,
“apology_baiting”: “Apology-baiting manipulates victims into apologizing for abuser’s behavior.”,
“deflection”: “Deflection avoids accountability by redirecting blame.”,
“control”: “Control restricts autonomy through manipulation or coercion.”,
“extreme_control”: “Extreme control dominates decisions and behaviors entirely.”,
“physical_threat”: “Physical threats signal risk of bodily harm.”,
“suicidal_threat”: “Suicidal threats manipulate others using self-harm threats.”,
“guilt_tripping”: “Guilt-tripping uses guilt to manipulate someone’s actions.”,
“manipulation”: “Manipulation deceives to influence or control outcomes.”,
“non_abusive”: “Non-abusive language is respectful and free of coercion.”,
“obscure_formal”: “Obscure/formal language manipulates through confusion or superiority.”
}
def custom_sentiment(text):
inputs = sentiment_tokenizer(text, return_tensors=“pt”, truncation=True, padding=True)
with torch.no_grad():
outputs = sentiment_model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
label_idx = torch.argmax(probs).item()
label_map = {0: “supportive”, 1: “undermining”}
label = label_map[label_idx]
score = probs[0][label_idx].item()
return {“label”: label, “score”: score}
def calculate_abuse_level(scores, thresholds):
triggered_scores = [score for label, score in zip(LABELS, scores) if score > thresholds[label]]
return round(np.mean(triggered_scores) * 100, 2) if triggered_scores else 0.0
def interpret_abuse_level(score):
if score > 80: return “Extreme / High Risk”
elif score > 60: return “Severe / Harmful Pattern Present”
elif score > 40: return “Likely Abuse”
elif score > 20: return “Mild Concern”
return “Very Low / Likely Safe”
def analyze_messages(input_text, risk_flags):
input_text = input_text.strip()
if not input_text:
return “Please enter a message for analysis.”
sentiment = custom_sentiment(input_text)
sentiment_label = sentiment['label']
sentiment_score = sentiment['score']
adjusted_thresholds = {k: v * 0.8 for k, v in THRESHOLDS.items()} if sentiment_label == "undermining" else THRESHOLDS.copy()
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
pattern_count = sum(score > adjusted_thresholds[label] for label, score in zip(PATTERN_LABELS, scores[:15]))
danger_flag_count = sum(score > adjusted_thresholds[label] for label, score in zip(DANGER_LABELS, scores[15:18]))
contextual_flags = risk_flags if risk_flags else []
if len(contextual_flags) >= 2:
danger_flag_count += 1
critical_flags = ["They've threatened harm", "They monitor/follow me", "I feel unsafe when alone with them"]
high_risk_context = any(flag in contextual_flags for flag in critical_flags)
non_abusive_score = scores[LABELS.index('non_abusive')]
if non_abusive_score > adjusted_thresholds['non_abusive']:
return "This message is classified as non-abusive."
abuse_level = calculate_abuse_level(scores, adjusted_thresholds)
abuse_description = interpret_abuse_level(abuse_level)
if danger_flag_count >= 2:
resources = "Immediate assistance recommended. Please seek professional help or contact emergency services."
else:
resources = "For more information on abuse patterns, consider reaching out to support groups or professional counselors."
scored_patterns = [(label, scores[LABELS.index(label)]) for label in PATTERN_LABELS if label != "non_abusive"]
scored_dangers = [(label, scores[LABELS.index(label)]) for label in DANGER_LABELS]
top_patterns = sorted(
[(label, score) for label, score in scored_patterns if score > adjusted_thresholds[label]],
key=lambda x: x[1], reverse=True
)[:2]
top_dangers = sorted(
[(label, score) for label, score in scored_dangers if score > adjusted_thresholds[label]],
key=lambda x: x[1], reverse=True
)
highlighted_danger = top_dangers[0] if top_dangers else None
top_pattern_explanations = "\n".join([
f"\u2022 {label.replace('_', ' ').title()}: {EXPLANATIONS.get(label, 'No explanation available.')}"
for label, _ in top_patterns
])
if highlighted_danger and highlighted_danger[0] not in [label for label, _ in top_patterns]:
danger_label = highlighted_danger[0]
top_pattern_explanations += f"\n\u2022 {danger_label.replace('_', ' ').title()}: {EXPLANATIONS.get(danger_label, 'No explanation available.')} (Danger Pattern)"
result = (
f"Abuse Risk Score: {abuse_level}% – {abuse_description}\n\n"
f"Most Likely Patterns:\n{top_pattern_explanations}\n\n"
f"⚠️ Critical Danger Flags Detected: {danger_flag_count} of 3\n"
"Resources: " + resources + "\n\n"
f"Sentiment: {sentiment_label.title()} (Confidence: {sentiment_score*100:.2f}%)"
)
if contextual_flags:
result += "\n\n⚠️ You indicated the following:\n" + "\n".join([f"• {flag}" for flag in contextual_flags])
if high_risk_context:
result += "\n\n🚨 These responses suggest a high-risk situation. Consider seeking immediate help or safety planning resources."
return result
iface = gr.Interface(
fn=analyze_messages,
inputs=[
gr.Textbox(lines=10, placeholder=“Enter message here…”),
gr.CheckboxGroup(label=“Do any of these apply to your situation?”, choices=[
“They’ve threatened harm”, “They isolate me”, “I’ve changed my behavior out of fear”,
“They monitor/follow me”, “I feel unsafe when alone with them”
])
],
outputs=[gr.Textbox(label=“Analysis Result”)],
title=“Abuse Pattern Detector”
)
if name == “main”:
iface.launch() |