Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,125 Bytes
d6e219c f1948f2 a9d4250 f1948f2 5dfb1ca f1948f2 5dfb1ca a9d4250 5dfb1ca 79936aa f1948f2 5dfb1ca c303ab8 293a004 5dfb1ca ab8c96f 293a004 b11fbe8 293a004 ab8c96f b11fbe8 c303ab8 b11fbe8 c303ab8 4292d1b 5dfb1ca 4292d1b 79936aa f1948f2 4292d1b 79936aa 5dfb1ca f1948f2 4292d1b 79936aa 5dfb1ca 4292d1b 79936aa 5dfb1ca 4292d1b 79936aa 5dfb1ca 4292d1b ab8c96f 5d7c4ba ab8c96f 5dfb1ca ab8c96f 83c1ff8 5dfb1ca 5d7c4ba 5dfb1ca ab8c96f 5dfb1ca ab8c96f 4292d1b 5dfb1ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import gradio as gr
import torch
from transformers import RobertaForSequenceClassification, RobertaTokenizer
import numpy as np
# Load model and tokenizer with trust_remote_code in case it's needed
model_name = "SamanthaStorm/abuse-pattern-detector-v2"
model = RobertaForSequenceClassification.from_pretrained(model_name, trust_remote_code=True)
tokenizer = RobertaTokenizer.from_pretrained(model_name, trust_remote_code=True)
# Define labels (17 total)
LABELS = [
"gaslighting", "mockery", "dismissiveness", "control",
"guilt_tripping", "apology_baiting", "blame_shifting", "projection",
"contradictory_statements", "manipulation", "deflection", "insults",
"obscure_formal", "recovery_phase", "suicidal_threat", "physical_threat",
"extreme_control"
]
# Custom thresholds for each label (make sure these match your original settings)
THRESHOLDS = {
"gaslighting": 0.15,
"mockery": 0.15,
"dismissiveness": 0.25, # original value, not 0.30
"control": 0.13,
"guilt_tripping": 0.15,
"apology_baiting": 0.15,
"blame_shifting": 0.15,
"projection": 0.20,
"contradictory_statements": 0.15,
"manipulation": 0.15,
"deflection": 0.15,
"insults": 0.20,
"obscure_formal": 0.20,
"recovery_phase": 0.15,
"suicidal_threat": 0.08,
"physical_threat": 0.045,
"extreme_control": 0.30,
}
# Define label groups using slicing (first 14: abuse patterns, last 3: danger cues)
PATTERN_LABELS = LABELS[:14]
DANGER_LABELS = LABELS[14:]
def calculate_abuse_level(scores, thresholds):
triggered_scores = [score for label, score in zip(LABELS, scores) if score > thresholds[label]]
if not triggered_scores:
return 0.0
return round(np.mean(triggered_scores) * 100, 2)
def interpret_abuse_level(score):
if score > 80:
return "Extreme / High Risk"
elif score > 60:
return "Severe / Harmful Pattern Present"
elif score > 40:
return "Likely Abuse"
elif score > 20:
return "Mild Concern"
else:
return "Very Low / Likely Safe"
def analyze_messages(input_text):
input_text = input_text.strip()
if not input_text:
return "Please enter a message for analysis.", None
# Tokenize input and generate model predictions
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
# Count the number of triggered abuse pattern and danger flags based on thresholds
pattern_count = sum(score > THRESHOLDS[label] for label, score in zip(PATTERN_LABELS, scores[:14]))
danger_flag_count = sum(score > THRESHOLDS[label] for label, score in zip(DANGER_LABELS, scores[14:]))
# Calculate overall abuse level and interpret it
abuse_level = calculate_abuse_level(scores, THRESHOLDS)
abuse_description = interpret_abuse_level(abuse_level)
# Resource logic based on the number of danger cues
if danger_flag_count >= 2:
resources = "Immediate assistance recommended. Please seek professional help or contact emergency services."
else:
resources = "For more information on abuse patterns, consider reaching out to support groups or professional counselors."
# Prepare the result summary and detailed scores
result = (
f"Abuse Patterns Detected: {pattern_count} out of {len(PATTERN_LABELS)}\n"
f"Danger Flags Detected: {danger_flag_count} out of {len(DANGER_LABELS)}\n"
f"Abuse Level: {abuse_level}% - {abuse_description}\n"
f"Resources: {resources}"
)
# Return both a text summary and a JSON-like dict of scores per label
return result, {"scores": dict(zip(LABELS, scores))}
# Updated Gradio Interface using new component syntax
iface = gr.Interface(
fn=analyze_messages,
inputs=gr.Textbox(lines=10, placeholder="Enter message here..."),
outputs=[
gr.Textbox(label="Analysis Result"),
gr.JSON(label="Scores")
],
title="Abuse Pattern Detector"
)
if __name__ == "__main__":
iface.launch() |