File size: 7,203 Bytes
d6e219c
f1948f2
 
4472a1d
cc98c96
0ff864f
c43452c
f1948f2
4dccd71
 
2efdba9
2272c61
2efdba9
4dccd71
8e4d20e
 
a9d4250
79936aa
4dccd71
 
 
79936aa
f1948f2
c303ab8
4dccd71
 
 
 
c303ab8
4292d1b
43095bd
 
 
94e76c4
4dccd71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94e76c4
23bb2d2
4472a1d
73582bd
 
b98a1ee
 
 
2efdba9
73582bd
 
 
 
4472a1d
43095bd
73582bd
 
43095bd
23bb2d2
73582bd
 
 
 
 
43095bd
 
73582bd
 
 
2efdba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dccd71
2efdba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d7c4ba
ab8c96f
ad04ec8
 
 
 
 
 
 
 
 
 
 
ab8c96f
4292d1b
4dccd71
73582bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import gradio as gr
import torch
import numpy as np
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from transformers import RobertaForSequenceClassification, RobertaTokenizer

# custom fine-tuned sentiment model

sentiment_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-sentiment")
sentiment_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tether-sentiment")

# Load abuse pattern model

model_name = "SamanthaStorm/abuse-pattern-detector-v2"
model = RobertaForSequenceClassification.from_pretrained(model_name, trust_remote_code=True)
tokenizer = RobertaTokenizer.from_pretrained(model_name, trust_remote_code=True)

LABELS = [
"gaslighting", "mockery", "dismissiveness", "control", "guilt_tripping", "apology_baiting", "blame_shifting", "projection",
"contradictory_statements", "manipulation", "deflection", "insults", "obscure_formal", "recovery_phase", "non_abusive",
"suicidal_threat", "physical_threat", "extreme_control"
]

THRESHOLDS = {
"gaslighting": 0.25, "mockery": 0.15, "dismissiveness": 0.30, "control": 0.43, "guilt_tripping": 0.19,
"apology_baiting": 0.45, "blame_shifting": 0.23, "projection": 0.50, "contradictory_statements": 0.25,
"manipulation": 0.25, "deflection": 0.30, "insults": 0.34, "obscure_formal": 0.25, "recovery_phase": 0.25,
"non_abusive": 2.0, "suicidal_threat": 0.45, "physical_threat": 0.02, "extreme_control": 0.36
}

PATTERN_LABELS = LABELS[:15]
DANGER_LABELS = LABELS[15:18]

EXPLANATIONS = {
"gaslighting": "Gaslighting involves making someone question their own reality or perceptions...",
"blame_shifting": "Blame-shifting is when one person redirects the responsibility...",
"projection": "Projection involves accusing the victim of behaviors the abuser exhibits.",
"dismissiveness": "Dismissiveness is belittling or disregarding another person’s feelings.",
"mockery": "Mockery ridicules someone in a hurtful, humiliating way.",
"recovery_phase": "Recovery phase dismisses someone's emotional healing process.",
"insults": "Insults are derogatory remarks aimed at degrading someone.",
"apology_baiting": "Apology-baiting manipulates victims into apologizing for abuser's behavior.",
"deflection": "Deflection avoids accountability by redirecting blame.",
"control": "Control restricts autonomy through manipulation or coercion.",
"extreme_control": "Extreme control dominates decisions and behaviors entirely.",
"physical_threat": "Physical threats signal risk of bodily harm.",
"suicidal_threat": "Suicidal threats manipulate others using self-harm threats.",
"guilt_tripping": "Guilt-tripping uses guilt to manipulate someone’s actions.",
"manipulation": "Manipulation deceives to influence or control outcomes.",
"non_abusive": "Non-abusive language is respectful and free of coercion.",
"obscure_formal": "Obscure/formal language manipulates through confusion or superiority."
}

def custom_sentiment(text):
    inputs = sentiment_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
    with torch.no_grad():
        outputs = sentiment_model(**inputs)
        probs = torch.nn.functional.softmax(outputs.logits, dim=1)
        label_idx = torch.argmax(probs).item()

    label_map = {0: "supportive", 1: "undermining"}
    label = label_map[label_idx]
    score = probs[0][label_idx].item()
    return {"label": label, "score": score}

def calculate_abuse_level(scores, thresholds):
    triggered_scores = [score for label, score in zip(LABELS, scores) if score > thresholds[label]]
    return round(np.mean(triggered_scores) * 100, 2) if triggered_scores else 0.0

def interpret_abuse_level(score):
    if score > 80: return "Extreme / High Risk"
    elif score > 60: return "Severe / Harmful Pattern Present"
    elif score > 40: return "Likely Abuse"
    elif score > 20: return "Mild Concern"
    return "Very Low / Likely Safe"

def analyze_messages(input_text, risk_flags):
    input_text = input_text.strip()
    if not input_text:
    return "Please enter a message for analysis."

sentiment = custom_sentiment(input_text)
sentiment_label = sentiment['label']
sentiment_score = sentiment['score']

adjusted_thresholds = {k: v * 0.8 for k, v in THRESHOLDS.items()} if sentiment_label == "undermining" else THRESHOLDS.copy()

inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
    outputs = model(**inputs)
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()

pattern_count = sum(score > adjusted_thresholds[label] for label, score in zip(PATTERN_LABELS, scores[:15]))
danger_flag_count = sum(score > adjusted_thresholds[label] for label, score in zip(DANGER_LABELS, scores[15:18]))

contextual_flags = risk_flags if risk_flags else []
if len(contextual_flags) >= 2:
    danger_flag_count += 1

critical_flags = ["They've threatened harm", "They monitor/follow me", "I feel unsafe when alone with them"]
high_risk_context = any(flag in contextual_flags for flag in critical_flags)

non_abusive_score = scores[LABELS.index('non_abusive')]
if non_abusive_score > adjusted_thresholds['non_abusive']:
    return "This message is classified as non-abusive."

abuse_level = calculate_abuse_level(scores, adjusted_thresholds)
abuse_description = interpret_abuse_level(abuse_level)

if danger_flag_count >= 2:
    resources = "Immediate assistance recommended. Please seek professional help or contact emergency services."
else:
    resources = "For more information on abuse patterns, consider reaching out to support groups or professional counselors."

scored_patterns = [
    (label, score) for label, score in zip(PATTERN_LABELS, scores[:15]) if label != "non_abusive"
]
top_patterns = sorted(scored_patterns, key=lambda x: x[1], reverse=True)[:2]

top_pattern_explanations = "\n".join([
    f"\u2022 {label.replace('_', ' ').title()}: {EXPLANATIONS.get(label, 'No explanation available.')}"
    for label, _ in top_patterns
])

result = (
    f"Abuse Risk Score: {abuse_level}% – {abuse_description}\n\n"
    f"Most Likely Patterns:\n{top_pattern_explanations}\n\n"
    f"⚠️ Critical Danger Flags Detected: {danger_flag_count} of 3\n"
    "Resources: " + resources + "\n\n"
    f"Sentiment: {sentiment_label.title()} (Confidence: {sentiment_score*100:.2f}%)"
)

if contextual_flags:
    result += "\n\n⚠️ You indicated the following:\n" + "\n".join([f"• {flag}" for flag in contextual_flags])
if high_risk_context:
    result += "\n\n🚨 These responses suggest a high-risk situation. Consider seeking immediate help or safety planning resources."

return result

iface = gr.Interface(
    fn=analyze_messages,
    inputs=[
        gr.Textbox(lines=10, placeholder="Enter message here..."),
        gr.CheckboxGroup(label="Do any of these apply to your situation?", choices=[
            "They've threatened harm", "They isolate me", "I’ve changed my behavior out of fear",
            "They monitor/follow me", "I feel unsafe when alone with them"
        ])
    ],
    outputs=[gr.Textbox(label="Analysis Result")],
    title="Abuse Pattern Detector",
    live=True  # ← 🔥 this is the missing key for .queue().launch() to work
)

if name == "main":
    iface.queue().launch()