Segizu's picture
no cache embeddings baches
9bc27e3
raw
history blame
4.52 kB
import numpy as np
from PIL import Image
import gradio as gr
from deepface import DeepFace
from datasets import load_dataset, DownloadConfig
import os
import pickle
from pathlib import Path
import gc
# 🔑 Configurar token de Hugging Face
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("⚠️ Por favor, configura la variable de entorno HF_TOKEN para acceder al dataset privado")
# 📁 Configurar directorio de embeddings
EMBEDDINGS_DIR = Path("embeddings")
EMBEDDINGS_DIR.mkdir(exist_ok=True)
EMBEDDINGS_FILE = EMBEDDINGS_DIR / "embeddings.pkl"
os.system("rm -rf ~/.cache/huggingface/hub/datasets--Segizu--facial-recognition")
# ✅ Cargar el dataset de Hugging Face forzando la descarga limpia
download_config = DownloadConfig(
force_download=True,
token=HF_TOKEN
)
dataset = load_dataset("Segizu/facial-recognition", download_config=download_config)
if "train" in dataset:
dataset = dataset["train"]
# 🔄 Preprocesar imagen para Facenet
def preprocess_image(img):
img_rgb = img.convert("RGB")
img_resized = img_rgb.resize((160, 160), Image.Resampling.LANCZOS)
return np.array(img_resized)
# 📦 Construir base de datos de embeddings
def build_database():
# Intentar cargar embeddings desde el archivo
if EMBEDDINGS_FILE.exists():
print("📂 Cargando embeddings desde el archivo...")
with open(EMBEDDINGS_FILE, 'rb') as f:
return pickle.load(f)
print("🔄 Calculando embeddings (esto puede tomar unos minutos)...")
database = []
batch_size = 10 # Procesar 10 imágenes a la vez
for i in range(0, len(dataset), batch_size):
batch = dataset[i:i + batch_size]
print(f"📦 Procesando lote {i//batch_size + 1}/{(len(dataset) + batch_size - 1)//batch_size}")
for j, item in enumerate(batch):
try:
img = item["image"]
img_processed = preprocess_image(img)
embedding = DeepFace.represent(
img_path=img_processed,
model_name="Facenet",
enforce_detection=False
)[0]["embedding"]
database.append((f"image_{i+j}", img, embedding))
print(f"✅ Procesada imagen {i+j+1}/{len(dataset)}")
# Liberar memoria
del img_processed
gc.collect()
except Exception as e:
print(f"❌ No se pudo procesar imagen {i+j}: {e}")
# Guardar progreso después de cada lote
print("💾 Guardando progreso...")
with open(EMBEDDINGS_FILE, 'wb') as f:
pickle.dump(database, f)
# Liberar memoria después de cada lote
gc.collect()
return database
# 🔍 Buscar rostros similares
def find_similar_faces(uploaded_image):
try:
img_processed = preprocess_image(uploaded_image)
query_embedding = DeepFace.represent(
img_path=img_processed,
model_name="Facenet",
enforce_detection=False
)[0]["embedding"]
# Liberar memoria
del img_processed
gc.collect()
except:
return [], "⚠ No se detectó un rostro válido en la imagen."
similarities = []
for name, db_img, embedding in database:
dist = np.linalg.norm(np.array(query_embedding) - np.array(embedding))
sim_score = 1 / (1 + dist)
similarities.append((sim_score, name, db_img))
similarities.sort(reverse=True)
top_matches = similarities[:5]
gallery_items = []
text_summary = ""
for sim, name, img in top_matches:
caption = f"{name} - Similitud: {sim:.2f}"
gallery_items.append((img, caption))
text_summary += caption + "\n"
return gallery_items, text_summary
# ⚙️ Inicializar base
print("🚀 Iniciando aplicación...")
database = build_database()
print(f"✅ Base de datos cargada con {len(database)} imágenes")
# 🎛️ Interfaz Gradio
demo = gr.Interface(
fn=find_similar_faces,
inputs=gr.Image(label="📤 Sube una imagen", type="pil"),
outputs=[
gr.Gallery(label="📸 Rostros más similares"),
gr.Textbox(label="🧠 Similitud", lines=6)
],
title="🔍 Buscador de Rostros con DeepFace",
description="Sube una imagen y se comparará contra los rostros del dataset alojado en Hugging Face (`Segizu/facial-recognition`)."
)
demo.launch()