File size: 4,518 Bytes
7823cea
bf687e5
7823cea
 
fff17ea
b78ec6d
36f95d9
 
9bc27e3
a36d980
 
 
 
 
 
78e29c2
 
 
 
36f95d9
19d4ac3
bf687e5
fff17ea
a36d980
 
 
 
d4c09d2
17df602
 
bf687e5
59cebaf
 
 
 
 
 
fff17ea
7823cea
78e29c2
 
 
 
36f95d9
 
 
7823cea
9bc27e3
36f95d9
9bc27e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36f95d9
7823cea
 
fff17ea
7823cea
 
59cebaf
fff17ea
59cebaf
fff17ea
 
 
9bc27e3
 
 
 
 
7823cea
 
bf687e5
7823cea
fff17ea
 
 
 
bf687e5
7823cea
36f95d9
7823cea
bf687e5
7823cea
17df602
7823cea
d771ba3
7823cea
 
 
bf687e5
fff17ea
36f95d9
fff17ea
36f95d9
fff17ea
 
bf687e5
7823cea
 
bf687e5
f134081
7823cea
bf687e5
7823cea
36f95d9
bf687e5
8fed1b4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import numpy as np
from PIL import Image
import gradio as gr
from deepface import DeepFace
from datasets import load_dataset, DownloadConfig
import os
import pickle
from pathlib import Path
import gc

# 🔑 Configurar token de Hugging Face
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
    raise ValueError("⚠️ Por favor, configura la variable de entorno HF_TOKEN para acceder al dataset privado")

# 📁 Configurar directorio de embeddings
EMBEDDINGS_DIR = Path("embeddings")
EMBEDDINGS_DIR.mkdir(exist_ok=True)
EMBEDDINGS_FILE = EMBEDDINGS_DIR / "embeddings.pkl"

os.system("rm -rf ~/.cache/huggingface/hub/datasets--Segizu--facial-recognition")

# ✅ Cargar el dataset de Hugging Face forzando la descarga limpia
download_config = DownloadConfig(
    force_download=True,
    token=HF_TOKEN
)
dataset = load_dataset("Segizu/facial-recognition", download_config=download_config)
if "train" in dataset:
    dataset = dataset["train"]

# 🔄 Preprocesar imagen para Facenet
def preprocess_image(img):
    img_rgb = img.convert("RGB")
    img_resized = img_rgb.resize((160, 160), Image.Resampling.LANCZOS)
    return np.array(img_resized)

# 📦 Construir base de datos de embeddings
def build_database():
    # Intentar cargar embeddings desde el archivo
    if EMBEDDINGS_FILE.exists():
        print("📂 Cargando embeddings desde el archivo...")
        with open(EMBEDDINGS_FILE, 'rb') as f:
            return pickle.load(f)
    
    print("🔄 Calculando embeddings (esto puede tomar unos minutos)...")
    database = []
    batch_size = 10  # Procesar 10 imágenes a la vez
    
    for i in range(0, len(dataset), batch_size):
        batch = dataset[i:i + batch_size]
        print(f"📦 Procesando lote {i//batch_size + 1}/{(len(dataset) + batch_size - 1)//batch_size}")
        
        for j, item in enumerate(batch):
            try:
                img = item["image"]
                img_processed = preprocess_image(img)
                embedding = DeepFace.represent(
                    img_path=img_processed,
                    model_name="Facenet",
                    enforce_detection=False
                )[0]["embedding"]
                database.append((f"image_{i+j}", img, embedding))
                print(f"✅ Procesada imagen {i+j+1}/{len(dataset)}")
                
                # Liberar memoria
                del img_processed
                gc.collect()
                
            except Exception as e:
                print(f"❌ No se pudo procesar imagen {i+j}: {e}")
        
        # Guardar progreso después de cada lote
        print("💾 Guardando progreso...")
        with open(EMBEDDINGS_FILE, 'wb') as f:
            pickle.dump(database, f)
        
        # Liberar memoria después de cada lote
        gc.collect()
    
    return database

# 🔍 Buscar rostros similares
def find_similar_faces(uploaded_image):
    try:
        img_processed = preprocess_image(uploaded_image)
        query_embedding = DeepFace.represent(
            img_path=img_processed,
            model_name="Facenet",
            enforce_detection=False
        )[0]["embedding"]
        
        # Liberar memoria
        del img_processed
        gc.collect()
        
    except:
        return [], "⚠ No se detectó un rostro válido en la imagen."

    similarities = []
    for name, db_img, embedding in database:
        dist = np.linalg.norm(np.array(query_embedding) - np.array(embedding))
        sim_score = 1 / (1 + dist)
        similarities.append((sim_score, name, db_img))

    similarities.sort(reverse=True)
    top_matches = similarities[:5]

    gallery_items = []
    text_summary = ""
    for sim, name, img in top_matches:
        caption = f"{name} - Similitud: {sim:.2f}"
        gallery_items.append((img, caption))
        text_summary += caption + "\n"

    return gallery_items, text_summary

# ⚙️ Inicializar base
print("🚀 Iniciando aplicación...")
database = build_database()
print(f"✅ Base de datos cargada con {len(database)} imágenes")

# 🎛️ Interfaz Gradio
demo = gr.Interface(
    fn=find_similar_faces,
    inputs=gr.Image(label="📤 Sube una imagen", type="pil"),
    outputs=[
        gr.Gallery(label="📸 Rostros más similares"),
        gr.Textbox(label="🧠 Similitud", lines=6)
    ],
    title="🔍 Buscador de Rostros con DeepFace",
    description="Sube una imagen y se comparará contra los rostros del dataset alojado en Hugging Face (`Segizu/facial-recognition`)."
)

demo.launch()