Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
import torchvision.transforms as T | |
from torchvision.transforms.functional import InterpolationMode | |
from transformers import AutoTokenizer, AutoModel | |
from decord import VideoReader, cpu | |
import tempfile | |
import json | |
from typing import List, Tuple, Optional, Union | |
import logging | |
# Configure logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Constants | |
IMAGENET_MEAN = (0.485, 0.456, 0.406) | |
IMAGENET_STD = (0.229, 0.224, 0.225) | |
MODEL_PATH = "OpenGVLab/InternVL2_5-4B" | |
class InternVLChatBot: | |
def __init__(self): | |
self.model = None | |
self.tokenizer = None | |
self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
self.generation_config = dict(max_new_tokens=1024, do_sample=True) | |
self.load_model() | |
def load_model(self): | |
"""Load the InternVL model and tokenizer""" | |
try: | |
logger.info("Loading InternVL2.5-4B model...") | |
self.model = AutoModel.from_pretrained( | |
MODEL_PATH, | |
torch_dtype=torch.bfloat16, | |
low_cpu_mem_usage=True, | |
trust_remote_code=True, | |
use_flash_attn=False, | |
device_map="auto" if self.device == "cuda" else None | |
) | |
self.tokenizer = AutoTokenizer.from_pretrained( | |
MODEL_PATH, trust_remote_code=True | |
) | |
logger.info("Model loaded successfully!") | |
except Exception as e: | |
logger.error(f"Error loading model: {str(e)}") | |
raise e | |
def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height, image_size): | |
"""Find the closest aspect ratio from target ratios""" | |
best_ratio_diff = float('inf') | |
best_ratio = (1, 1) | |
area = width * height | |
for ratio in target_ratios: | |
target_aspect_ratio = ratio[0] / ratio[1] | |
ratio_diff = abs(aspect_ratio - target_aspect_ratio) | |
if ratio_diff < best_ratio_diff: | |
best_ratio_diff = ratio_diff | |
best_ratio = ratio | |
elif ratio_diff == best_ratio_diff: | |
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | |
best_ratio = ratio | |
return best_ratio | |
def dynamic_preprocess(self, image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): | |
"""Dynamically preprocess image based on aspect ratio""" | |
orig_width, orig_height = image.size | |
aspect_ratio = orig_width / orig_height | |
# Calculate target ratios | |
target_ratios = set( | |
(i, j) for n in range(min_num, max_num + 1) | |
for i in range(1, n + 1) | |
for j in range(1, n + 1) | |
if i * j <= max_num and i * j >= min_num | |
) | |
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
# Find closest aspect ratio | |
target_aspect_ratio = self.find_closest_aspect_ratio( | |
aspect_ratio, target_ratios, orig_width, orig_height, image_size | |
) | |
# Calculate target dimensions | |
target_width = image_size * target_aspect_ratio[0] | |
target_height = image_size * target_aspect_ratio[1] | |
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | |
# Resize and split image | |
resized_img = image.resize((target_width, target_height)) | |
processed_images = [] | |
for i in range(blocks): | |
box = ( | |
(i % (target_width // image_size)) * image_size, | |
(i // (target_width // image_size)) * image_size, | |
((i % (target_width // image_size)) + 1) * image_size, | |
((i // (target_width // image_size)) + 1) * image_size | |
) | |
split_img = resized_img.crop(box) | |
processed_images.append(split_img) | |
if use_thumbnail and len(processed_images) != 1: | |
thumbnail_img = image.resize((image_size, image_size)) | |
processed_images.append(thumbnail_img) | |
return processed_images | |
def build_transform(self, input_size): | |
"""Build image transformation pipeline""" | |
transform = T.Compose([ | |
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), | |
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), | |
T.ToTensor(), | |
T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD) | |
]) | |
return transform | |
def load_image(self, image_path, input_size=448, max_num=12): | |
"""Load and preprocess image""" | |
if isinstance(image_path, str): | |
image = Image.open(image_path).convert('RGB') | |
else: | |
image = image_path.convert('RGB') | |
transform = self.build_transform(input_size=input_size) | |
images = self.dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) | |
pixel_values = [transform(img) for img in images] | |
pixel_values = torch.stack(pixel_values) | |
return pixel_values | |
def get_index(self, bound, fps, max_frame, first_idx=0, num_segments=32): | |
"""Get frame indices for video processing""" | |
if bound: | |
start, end = bound[0], bound[1] | |
else: | |
start, end = -100000, 100000 | |
start_idx = max(first_idx, round(start * fps)) | |
end_idx = min(round(end * fps), max_frame) | |
seg_size = float(end_idx - start_idx) / num_segments | |
frame_indices = np.array([ | |
int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) | |
for idx in range(num_segments) | |
]) | |
return frame_indices | |
def load_video(self, video_path, bound=None, input_size=448, max_num=1, num_segments=32): | |
"""Load and preprocess video""" | |
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) | |
max_frame = len(vr) - 1 | |
fps = float(vr.get_avg_fps()) | |
pixel_values_list, num_patches_list = [], [] | |
transform = self.build_transform(input_size=input_size) | |
frame_indices = self.get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments) | |
for frame_index in frame_indices: | |
img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB') | |
img = self.dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num) | |
pixel_values = [transform(tile) for tile in img] | |
pixel_values = torch.stack(pixel_values) | |
num_patches_list.append(pixel_values.shape[0]) | |
pixel_values_list.append(pixel_values) | |
pixel_values = torch.cat(pixel_values_list) | |
return pixel_values, num_patches_list | |
def chat(self, message, history, image=None, video=None): | |
"""Main chat function""" | |
try: | |
pixel_values = None | |
num_patches_list = None | |
# Process image if provided | |
if image is not None: | |
pixel_values = self.load_image(image, max_num=12) | |
if self.device == "cuda": | |
pixel_values = pixel_values.to(torch.bfloat16).cuda() | |
message = f"<image>\n{message}" | |
# Process video if provided | |
elif video is not None: | |
pixel_values, num_patches_list = self.load_video(video, num_segments=8, max_num=1) | |
if self.device == "cuda": | |
pixel_values = pixel_values.to(torch.bfloat16).cuda() | |
video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))]) | |
message = f"{video_prefix}{message}" | |
# Convert history to the expected format | |
chat_history = [] | |
if history: | |
for item in history: | |
if isinstance(item, dict) and "role" in item: | |
if item["role"] == "user": | |
last_user = item["content"] | |
elif item["role"] == "assistant": | |
chat_history.append((last_user, item["content"])) | |
# Generate response | |
if num_patches_list is not None: | |
response, new_history = self.model.chat( | |
self.tokenizer, | |
pixel_values, | |
message, | |
self.generation_config, | |
num_patches_list=num_patches_list, | |
history=chat_history, | |
return_history=True | |
) | |
else: | |
response, new_history = self.model.chat( | |
self.tokenizer, | |
pixel_values, | |
message, | |
self.generation_config, | |
history=chat_history, | |
return_history=True | |
) | |
# Update history | |
history.append({"role": "user", "content": message}) | |
history.append({"role": "assistant", "content": response}) | |
return "", history, None, None | |
except Exception as e: | |
logger.error(f"Error in chat: {str(e)}") | |
error_msg = f"Sorry, I encountered an error: {str(e)}" | |
history.append([message, error_msg]) | |
return "", history, None, None | |
# Initialize the chatbot | |
chatbot = InternVLChatBot() | |
# Create Gradio interface | |
def create_interface(): | |
"""Create the Gradio interface""" | |
# Custom CSS for better styling | |
custom_css = """ | |
.gradio-container { | |
font-family: 'Arial', sans-serif; | |
} | |
.chat-message { | |
padding: 10px; | |
margin: 5px 0; | |
border-radius: 10px; | |
} | |
.user-message { | |
background-color: #e3f2fd; | |
margin-left: 20px; | |
} | |
.bot-message { | |
background-color: #f5f5f5; | |
margin-right: 20px; | |
} | |
""" | |
with gr.Blocks(css=custom_css, title="InternVL2.5-4B Chat") as interface: | |
gr.Markdown(""" | |
# 🤖 InternVL2.5-4B Multimodal Chat | |
Welcome to the InternVL2.5-4B chat interface! This AI assistant can: | |
- 💬 Have conversations with text | |
- 🖼️ Analyze and describe images | |
- 🎥 Process and understand videos | |
- 📝 Extract text from images (OCR) | |
- 🎯 Answer questions about visual content | |
**Instructions:** | |
1. Type your message in the text box | |
2. Optionally upload an image or video | |
3. Click Send to get a response | |
4. Use "Clear" to reset the conversation | |
""") | |
with gr.Row(): | |
with gr.Column(scale=3): | |
chatbot_interface = gr.Chatbot( | |
label="Chat History", | |
height=500, | |
show_copy_button=True, | |
avatar_images=["👤", "🤖"], | |
type="messages" | |
) | |
with gr.Row(): | |
msg = gr.Textbox( | |
label="Your Message", | |
placeholder="Type your message here... You can ask about images, videos, or just chat!", | |
lines=2, | |
scale=4 | |
) | |
send_btn = gr.Button("Send 📤", scale=1, variant="primary") | |
with gr.Row(): | |
clear_btn = gr.Button("Clear 🗑️", scale=1) | |
with gr.Column(scale=1): | |
gr.Markdown("### 📎 Upload Media") | |
image_input = gr.Image( | |
label="Upload Image", | |
type="pil", | |
height=200 | |
) | |
video_input = gr.Video( | |
label="Upload Video", | |
height=200 | |
) | |
gr.Markdown(""" | |
**Supported formats:** | |
- Images: JPG, PNG, WEBP, GIF | |
- Videos: MP4, AVI, MOV, WEBM | |
**Tips:** | |
- For images: Ask about content, extract text, or describe what you see | |
- For videos: Ask for descriptions, analysis, or specific details | |
- You can upload one media file at a time | |
""") | |
# Example prompts | |
gr.Markdown("### 💡 Example Prompts") | |
with gr.Row(): | |
example_btn1 = gr.Button("👋 Hello, introduce yourself") | |
example_btn2 = gr.Button("🖼️ Describe this image") | |
example_btn3 = gr.Button("📝 Extract text from image") | |
example_btn4 = gr.Button("🎥 Analyze this video") | |
# Event handlers | |
def submit_message(message, history, image, video): | |
if not message.strip(): | |
return "", history, image, video | |
return chatbot.chat(message, history, image, video) | |
def clear_chat(): | |
return [], None, None | |
def set_example_prompt(prompt): | |
return prompt | |
# Wire up the interface | |
send_btn.click( | |
fn=submit_message, | |
inputs=[msg, chatbot_interface, image_input, video_input], | |
outputs=[msg, chatbot_interface, image_input, video_input] | |
) | |
msg.submit( | |
fn=submit_message, | |
inputs=[msg, chatbot_interface, image_input, video_input], | |
outputs=[msg, chatbot_interface, image_input, video_input] | |
) | |
clear_btn.click( | |
fn=clear_chat, | |
outputs=[chatbot_interface, image_input, video_input] | |
) | |
# Example button handlers | |
example_btn1.click( | |
fn=set_example_prompt, | |
inputs=[gr.State("Hello, who are you?")], | |
outputs=[msg] | |
) | |
example_btn2.click( | |
fn=set_example_prompt, | |
inputs=[gr.State("Please describe this image in detail.")], | |
outputs=[msg] | |
) | |
example_btn3.click( | |
fn=set_example_prompt, | |
inputs=[gr.State("Extract the exact text provided in the image.")], | |
outputs=[msg] | |
) | |
example_btn4.click( | |
fn=set_example_prompt, | |
inputs=[gr.State("Describe this video in detail.")], | |
outputs=[msg] | |
) | |
# Footer | |
gr.Markdown(""" | |
--- | |
**About InternVL2.5-4B:** A powerful multimodal AI model developed by Shanghai AI Lab, Tsinghua University and partners. | |
**API Usage:** This interface supports API calls. The chat endpoint accepts JSON with `message`, `image`, and `video` fields. | |
""") | |
return interface | |
# API endpoint for external integrations | |
def api_chat(message: str, image: Optional[str] = None, video: Optional[str] = None, history: Optional[List] = None): | |
""" | |
API endpoint for chat functionality | |
Args: | |
message: Text message | |
image: Base64 encoded image or image path | |
video: Video file path | |
history: Chat history as list of [user_msg, bot_msg] pairs | |
Returns: | |
Dictionary with response and updated history | |
""" | |
try: | |
if history is None: | |
history = [] | |
# Process image if provided (handle base64 or file path) | |
image_obj = None | |
if image: | |
try: | |
if image.startswith('data:image'): | |
# Handle base64 image | |
import base64 | |
from io import BytesIO | |
image_data = image.split(',')[1] | |
image_bytes = base64.b64decode(image_data) | |
image_obj = Image.open(BytesIO(image_bytes)) | |
else: | |
# Handle file path | |
image_obj = Image.open(image) | |
except Exception as e: | |
logger.error(f"Error processing image: {str(e)}") | |
# Chat with the model | |
_, updated_history, _, _ = chatbot.chat(message, history, image_obj, video) | |
return { | |
"response": updated_history[-1][1] if updated_history else "", | |
"history": updated_history, | |
"status": "success" | |
} | |
except Exception as e: | |
logger.error(f"API Error: {str(e)}") | |
return { | |
"response": f"Error: {str(e)}", | |
"history": history, | |
"status": "error" | |
} | |
if __name__ == "__main__": | |
# Create and launch the interface | |
interface = create_interface() | |
# Launch with API access enabled | |
interface.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=True, | |
show_api=True, | |
) | |