File size: 1,015 Bytes
69bd721
ff18bca
791fec0
69bd721
 
ff18bca
69bd721
 
791fec0
69bd721
ff18bca
791fec0
 
69bd721
791fec0
 
69bd721
 
791fec0
 
 
 
 
 
 
 
 
69bd721
 
ff18bca
69bd721
ff18bca
791fec0
 
69bd721
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch
import numpy as np
from transformers import ViTMAEForPreTraining, ViTImageProcessor
from PIL import Image
import gradio as gr
import matplotlib.pyplot as plt

model = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base")
feature_extractor = ViTImageProcessor.from_pretrained("facebook/vit-mae-base")

def visualize_mae(image):
    # 调整图像大小并预处理
    image = image.resize((224, 224))
    inputs = feature_extractor(images=image, return_tensors="pt")
    
    # 模型推理
    with torch.no_grad():
        outputs = model(**inputs)
    
    # 获取掩码(14x14)
    mask = outputs.mask[0].reshape(14, 14).cpu().numpy()
    
    # 可视化
    plt.imshow(mask, cmap="gray")
    plt.title("MAE Mask (14x14)")
    plt.axis("off")
    return plt.gcf()

iface = gr.Interface(
    fn=visualize_mae,
    inputs=gr.Image(type="pil"),
    outputs="plot",
    title="ViT-MAE Mask Visualization",
    description="Upload an image to see the MAE masking pattern.",
)
iface.launch()