Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
from transformers import ViTMAEForPreTraining, ViTImageProcessor | |
from PIL import Image | |
import gradio as gr | |
import matplotlib.pyplot as plt | |
model = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base") | |
feature_extractor = ViTImageProcessor.from_pretrained("facebook/vit-mae-base") | |
def visualize_mae(image): | |
# 调整图像大小并预处理 | |
image = image.resize((224, 224)) | |
inputs = feature_extractor(images=image, return_tensors="pt") | |
# 模型推理 | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# 获取掩码(14x14) | |
mask = outputs.mask[0].reshape(14, 14).cpu().numpy() | |
# 可视化 | |
plt.imshow(mask, cmap="gray") | |
plt.title("MAE Mask (14x14)") | |
plt.axis("off") | |
return plt.gcf() | |
iface = gr.Interface( | |
fn=visualize_mae, | |
inputs=gr.Image(type="pil"), | |
outputs="plot", | |
title="ViT-MAE Mask Visualization", | |
description="Upload an image to see the MAE masking pattern.", | |
) | |
iface.launch() |