File size: 15,519 Bytes
afe5cdc
e90a1d8
3ebf31b
afe5cdc
 
 
 
 
 
 
 
 
 
3a1aea9
ec4c704
3a1aea9
 
afe5cdc
 
 
 
 
 
3ebf31b
afe5cdc
 
 
3ebf31b
 
afe5cdc
 
 
 
3ebf31b
3a1aea9
 
 
 
 
 
 
 
 
 
3ebf31b
b7fa320
3ebf31b
c0be0df
3ebf31b
 
 
 
 
 
 
c0be0df
3ebf31b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0be0df
3ebf31b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0be0df
3ebf31b
c0be0df
3ebf31b
c0be0df
b7fa320
81b4cc3
 
3ebf31b
3a1aea9
81b4cc3
 
 
 
 
3ebf31b
81b4cc3
ec4c704
81b4cc3
ec4c704
 
 
 
 
 
 
 
 
 
 
 
 
 
81b4cc3
 
588136e
 
3a1aea9
588136e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81b4cc3
 
 
 
 
 
 
 
 
 
 
 
 
 
3ebf31b
81b4cc3
3ebf31b
 
 
 
 
 
 
81b4cc3
 
 
 
 
 
 
 
 
 
 
3ebf31b
81b4cc3
3ebf31b
 
 
 
 
81b4cc3
 
 
 
 
 
 
 
 
3ebf31b
 
 
 
 
 
 
 
 
 
 
 
540680a
f8e489c
3ebf31b
f8e489c
3ebf31b
f8e489c
3ebf31b
 
 
 
 
 
 
 
 
2c544af
 
afe5cdc
 
24cd589
afe5cdc
24cd589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ebf31b
ec4c704
 
3ebf31b
3a1aea9
 
3ebf31b
 
 
ec4c704
 
 
 
 
 
 
 
 
3ebf31b
 
ec4c704
3ebf31b
 
 
 
 
 
 
 
 
 
 
 
ec4c704
 
3ebf31b
 
 
 
 
c17faf0
3ebf31b
 
 
 
ec4c704
 
588136e
3ebf31b
3a1aea9
 
 
 
 
 
75c5665
3ebf31b
 
 
 
 
 
3a1aea9
3ebf31b
 
 
 
beb20dc
3ebf31b
 
 
 
2c544af
 
3ebf31b
 
 
 
 
 
 
d55609e
c17faf0
3ebf31b
 
 
 
 
 
 
 
c17faf0
3ebf31b
 
 
ec4c704
afe5cdc
 
3ebf31b
afe5cdc
3a1aea9
81b4cc3
afe5cdc
3ebf31b
afe5cdc
 
3ebf31b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D

import os
import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from PIL import Image
from Amodal3R.pipelines import Amodal3RImageTo3DPipeline
from trellis.pipelines import TrellisImageTo3DPipeline
from Amodal3R.representations import Gaussian, MeshExtractResult
from Amodal3R.utils import render_utils, postprocessing_utils


MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)


def start_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)
    
    
def end_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    shutil.rmtree(user_dir)


# def preprocess_image(image: Image.Image) -> Image.Image:
#     """
#     Preprocess the input image.
#     Args:
#         image (Image.Image): The input image.
#     Returns:
#         Image.Image: The preprocessed image.
#     """
#     processed_image = pipeline.preprocess_image(image)
#     return processed_image


def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
    """

    Preprocess a list of input images.

    

    Args:

        images (List[Tuple[Image.Image, str]]): The input images.

        

    Returns:

        List[Image.Image]: The preprocessed images.

    """
    images = [image[0] for image in images]
    processed_images = [pipeline.preprocess_image(image) for image in images]
    return processed_images


def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
    return {
        'gaussian': {
            **gs.init_params,
            '_xyz': gs._xyz.cpu().numpy(),
            '_features_dc': gs._features_dc.cpu().numpy(),
            '_scaling': gs._scaling.cpu().numpy(),
            '_rotation': gs._rotation.cpu().numpy(),
            '_opacity': gs._opacity.cpu().numpy(),
        },
        'mesh': {
            'vertices': mesh.vertices.cpu().numpy(),
            'faces': mesh.faces.cpu().numpy(),
        },
    }
    
    
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
    gs = Gaussian(
        aabb=state['gaussian']['aabb'],
        sh_degree=state['gaussian']['sh_degree'],
        mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
        scaling_bias=state['gaussian']['scaling_bias'],
        opacity_bias=state['gaussian']['opacity_bias'],
        scaling_activation=state['gaussian']['scaling_activation'],
    )
    gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
    gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
    gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
    gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
    gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
    
    mesh = edict(
        vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
        faces=torch.tensor(state['mesh']['faces'], device='cuda'),
    )
    
    return gs, mesh


def get_seed(randomize_seed: bool, seed: int) -> int:
    """

    Get the random seed.

    """
    return np.random.randint(0, MAX_SEED) if randomize_seed else seed


@spaces.GPU
def image_to_3d(

    image: Image.Image,

    mask: Image.Image,

    seed: int,

    ss_guidance_strength: float,

    ss_sampling_steps: int,

    slat_guidance_strength: float,

    slat_sampling_steps: int,

    multiimage_algo: Literal["multidiffusion", "stochastic"],

    req: gr.Request,

) -> Tuple[dict, str]:
    """

    Convert an image to a 3D model.

    Args:

        image (Image.Image): The input image.

        multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode.

        is_multiimage (bool): Whether is in multi-image mode.

        seed (int): The random seed.

        ss_guidance_strength (float): The guidance strength for sparse structure generation.

        ss_sampling_steps (int): The number of sampling steps for sparse structure generation.

        slat_guidance_strength (float): The guidance strength for structured latent generation.

        slat_sampling_steps (int): The number of sampling steps for structured latent generation.

        multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.

    Returns:

        dict: The information of the generated 3D model.

        str: The path to the video of the 3D model.

    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    outputs = pipeline.run_multi_image(
        [image],
        [mask],
        seed=seed,
        formats=["gaussian", "mesh"],
        preprocess_image=False,
        sparse_structure_sampler_params={
            "steps": ss_sampling_steps,
            "cfg_strength": ss_guidance_strength,
        },
        slat_sampler_params={
            "steps": slat_sampling_steps,
            "cfg_strength": slat_guidance_strength,
        },
        mode=multiimage_algo,
    )
    video = render_utils.render_video(outputs['gaussian'][0], num_frames=120, bg_color=(1,1,1))['color']
    video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120, bg_color=(1,1,1))['normal']
    video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
    video_path = os.path.join(user_dir, 'sample.mp4')
    imageio.mimsave(video_path, video, fps=15)
    state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
    torch.cuda.empty_cache()
    return state, video_path


@spaces.GPU(duration=90)
def extract_glb(

    state: dict,

    mesh_simplify: float,

    texture_size: int,

    req: gr.Request,

) -> Tuple[str, str]:
    """

    Extract a GLB file from the 3D model.

    Args:

        state (dict): The state of the generated 3D model.

        mesh_simplify (float): The mesh simplification factor.

        texture_size (int): The texture resolution.

    Returns:

        str: The path to the extracted GLB file.

    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    gs, mesh = unpack_state(state)
    glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
    glb_path = os.path.join(user_dir, 'sample.glb')
    glb.export(glb_path)
    torch.cuda.empty_cache()
    return glb_path, glb_path


@spaces.GPU
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
    """

    Extract a Gaussian file from the 3D model.

    Args:

        state (dict): The state of the generated 3D model.

    Returns:

        str: The path to the extracted Gaussian file.

    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    gs, _ = unpack_state(state)
    gaussian_path = os.path.join(user_dir, 'sample.ply')
    gs.save_ply(gaussian_path)
    torch.cuda.empty_cache()
    return gaussian_path, gaussian_path


def prepare_multi_example() -> List[Image.Image]:
    multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")]))
    images = []
    for case in multi_case:
        _images = []
        for i in range(1, 4):
            img = Image.open(f'assets/example_multi_image/{case}_{i}.png')
            W, H = img.size
            img = img.resize((int(W / H * 512), 512))
            _images.append(np.array(img))
        images.append(Image.fromarray(np.concatenate(_images, axis=1)))
    return images


def split_image(image: Image.Image) -> List[Image.Image]:
    """

    Split an image into multiple views.

    """
    image = np.array(image)
    alpha = image[..., 3]
    alpha = np.any(alpha>0, axis=0)
    start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
    end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
    images = []
    for s, e in zip(start_pos, end_pos):
        images.append(Image.fromarray(image[:, s:e+1]))
    return [preprocess_image(image) for image in images]


with gr.Blocks(delete_cache=(600, 600)) as demo:
    gr.Markdown("""

    ## 3D Amodal Reconstruction with [Amodal3R](https://sm0kywu.github.io/Amodal3R/)

    """)

    with gr.Row():
        gr.Markdown("""

        ### Step 1 - Generate Visibility Mask and Occlusion Mask.

        * Please wait for a few seconds after uploading the image. The 2D segmenter is getting ready.

        * Add the point prompts to indicate the target object and occluders separately.

        * "Render Point", see the position of the point to be added.

        * "Add Point", the point will be added to the list.

        * "Generate mask", see the segmented area corresponding to current point list.

        * "Add mask", current mask will be added for 3D amodal completion.

        """)

    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="numpy", label='Input Occlusion Image', sources="upload", height=300)
            with gr.Row():
                message = gr.Markdown("Please wait a few seconds after uploading the image.", label="Message")  # ็”จไบŽๆ˜พ็คบๆ็คบไฟกๆฏ
            with gr.Row():
                x_input = gr.Number(label="X Coordinate", value=0)
                y_input = gr.Number(label="Y Coordinate", value=0)
            with gr.Row():
                see_button = gr.Button("Render Point")
                add_button = gr.Button("Add Point")
            with gr.Row():
                clear_button = gr.Button("Clear Points")
                see_visible_button = gr.Button("Render Added Points")
            with gr.Row():
                # ๆ–ฐๅขžๆ–‡ๆœฌๆก†ๅฎžๆ—ถๆ˜พ็คบ็‚นๅˆ—่กจ
                points_text = gr.Textbox(label="Points List", interactive=False)
            with gr.Row():
                # ๆ–ฐๅขžไธ‹ๆ‹‰่œๅ•๏ผŒ็”จๆˆทๅฏ้€‰ๆ‹ฉ้œ€่ฆๅˆ ้™ค็š„็‚น
                visible_points_dropdown = gr.Dropdown(label="Select Point to Delete", choices=[], value=None, interactive=True)
                delete_visible_button = gr.Button("Delete Selected Visible")
        with gr.Column():
            # ็”จไบŽๆ˜พ็คบ SAM ๅˆ†ๅ‰ฒ็ป“ๆžœ
            visible_mask = gr.Image(label='Visible Mask', interactive=False, height=300)
            with gr.Row():
                gen_vis_mask = gr.Button("Generate Mask")
                add_vis_mask = gr.Button("Add Mask")
            with gr.Row():
                render_vis_mask = gr.Button("Render Mask")
                undo_vis_mask = gr.Button("Undo Last Mask")
            vis_input = gr.Image(label='Visible Input', interactive=False, height=300)
            with gr.Row():
                zoom_scale = gr.Slider(0.3, 1.0, label="Target Object Scale", value=0.6, step=0.1)
                check_visible_input = gr.Button("Generate Occluded Input")
    
    with gr.Row():
        with gr.Column():
            with gr.Tabs() as input_tabs:
                image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
                mask_prompt = gr.Image(label="Mask Prompt", format="png", image_mode="L", type="pil", height=300)
            
            with gr.Accordion(label="Generation Settings", open=False):
                seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                gr.Markdown("Stage 1: Sparse Structure Generation")
                with gr.Row():
                    ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
                    ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
                gr.Markdown("Stage 2: Structured Latent Generation")
                with gr.Row():
                    slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
                    slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
                multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")

            generate_btn = gr.Button("Generate")
            
            with gr.Accordion(label="GLB Extraction Settings", open=False):
                mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
                texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
            
            with gr.Row():
                extract_glb_btn = gr.Button("Extract GLB", interactive=False)
                extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
            gr.Markdown("""

                        *NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*

                        """)

        with gr.Column():
            video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
            model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
            
            with gr.Row():
                download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
                download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)  
    
    is_multiimage = gr.State(False)
    output_buf = gr.State()

    # Handlers
    demo.load(start_session)
    demo.unload(end_session)

    
    # image_prompt.upload(
    #     lambda x:x,
    #     inputs=[image_prompt],
    #     outputs=[image_prompt],
    # )


    generate_btn.click(
        get_seed,
        inputs=[randomize_seed, seed],
        outputs=[seed],
    ).then(
        image_to_3d,
        inputs=[image_prompt, mask_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
        outputs=[output_buf, video_output],
    ).then(
        lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
        outputs=[extract_glb_btn, extract_gs_btn],
    )

    video_output.clear(
        lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
        outputs=[extract_glb_btn, extract_gs_btn],
    )

    extract_glb_btn.click(
        extract_glb,
        inputs=[output_buf, mesh_simplify, texture_size],
        outputs=[model_output, download_glb],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_glb],
    )
    
    extract_gs_btn.click(
        extract_gaussian,
        inputs=[output_buf],
        outputs=[model_output, download_gs],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_gs],
    )

    model_output.clear(
        lambda: gr.Button(interactive=False),
        outputs=[download_glb],
    )
    

# Launch the Gradio app
if __name__ == "__main__":
    pipeline = pipeline = Amodal3RImageTo3DPipeline.from_pretrained("Sm0kyWu/Amodal3R")
    pipeline.cuda()
    try:
        pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))    # Preload rembg
    except:
        pass
    demo.launch()