Spaces:
Runtime error
Runtime error
File size: 15,519 Bytes
afe5cdc e90a1d8 3ebf31b afe5cdc 3a1aea9 ec4c704 3a1aea9 afe5cdc 3ebf31b afe5cdc 3ebf31b afe5cdc 3ebf31b 3a1aea9 3ebf31b b7fa320 3ebf31b c0be0df 3ebf31b c0be0df 3ebf31b c0be0df 3ebf31b c0be0df 3ebf31b c0be0df 3ebf31b c0be0df b7fa320 81b4cc3 3ebf31b 3a1aea9 81b4cc3 3ebf31b 81b4cc3 ec4c704 81b4cc3 ec4c704 81b4cc3 588136e 3a1aea9 588136e 81b4cc3 3ebf31b 81b4cc3 3ebf31b 81b4cc3 3ebf31b 81b4cc3 3ebf31b 81b4cc3 3ebf31b 540680a f8e489c 3ebf31b f8e489c 3ebf31b f8e489c 3ebf31b 2c544af afe5cdc 24cd589 afe5cdc 24cd589 3ebf31b ec4c704 3ebf31b 3a1aea9 3ebf31b ec4c704 3ebf31b ec4c704 3ebf31b ec4c704 3ebf31b c17faf0 3ebf31b ec4c704 588136e 3ebf31b 3a1aea9 75c5665 3ebf31b 3a1aea9 3ebf31b beb20dc 3ebf31b 2c544af 3ebf31b d55609e c17faf0 3ebf31b c17faf0 3ebf31b ec4c704 afe5cdc 3ebf31b afe5cdc 3a1aea9 81b4cc3 afe5cdc 3ebf31b afe5cdc 3ebf31b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from PIL import Image
from Amodal3R.pipelines import Amodal3RImageTo3DPipeline
from trellis.pipelines import TrellisImageTo3DPipeline
from Amodal3R.representations import Gaussian, MeshExtractResult
from Amodal3R.utils import render_utils, postprocessing_utils
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
def start_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
shutil.rmtree(user_dir)
# def preprocess_image(image: Image.Image) -> Image.Image:
# """
# Preprocess the input image.
# Args:
# image (Image.Image): The input image.
# Returns:
# Image.Image: The preprocessed image.
# """
# processed_image = pipeline.preprocess_image(image)
# return processed_image
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
"""
Preprocess a list of input images.
Args:
images (List[Tuple[Image.Image, str]]): The input images.
Returns:
List[Image.Image]: The preprocessed images.
"""
images = [image[0] for image in images]
processed_images = [pipeline.preprocess_image(image) for image in images]
return processed_images
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh
def get_seed(randomize_seed: bool, seed: int) -> int:
"""
Get the random seed.
"""
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
@spaces.GPU
def image_to_3d(
image: Image.Image,
mask: Image.Image,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
multiimage_algo: Literal["multidiffusion", "stochastic"],
req: gr.Request,
) -> Tuple[dict, str]:
"""
Convert an image to a 3D model.
Args:
image (Image.Image): The input image.
multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode.
is_multiimage (bool): Whether is in multi-image mode.
seed (int): The random seed.
ss_guidance_strength (float): The guidance strength for sparse structure generation.
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
slat_guidance_strength (float): The guidance strength for structured latent generation.
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.
Returns:
dict: The information of the generated 3D model.
str: The path to the video of the 3D model.
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
outputs = pipeline.run_multi_image(
[image],
[mask],
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
mode=multiimage_algo,
)
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120, bg_color=(1,1,1))['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120, bg_color=(1,1,1))['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
video_path = os.path.join(user_dir, 'sample.mp4')
imageio.mimsave(video_path, video, fps=15)
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
torch.cuda.empty_cache()
return state, video_path
@spaces.GPU(duration=90)
def extract_glb(
state: dict,
mesh_simplify: float,
texture_size: int,
req: gr.Request,
) -> Tuple[str, str]:
"""
Extract a GLB file from the 3D model.
Args:
state (dict): The state of the generated 3D model.
mesh_simplify (float): The mesh simplification factor.
texture_size (int): The texture resolution.
Returns:
str: The path to the extracted GLB file.
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
gs, mesh = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = os.path.join(user_dir, 'sample.glb')
glb.export(glb_path)
torch.cuda.empty_cache()
return glb_path, glb_path
@spaces.GPU
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
"""
Extract a Gaussian file from the 3D model.
Args:
state (dict): The state of the generated 3D model.
Returns:
str: The path to the extracted Gaussian file.
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
gs, _ = unpack_state(state)
gaussian_path = os.path.join(user_dir, 'sample.ply')
gs.save_ply(gaussian_path)
torch.cuda.empty_cache()
return gaussian_path, gaussian_path
def prepare_multi_example() -> List[Image.Image]:
multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")]))
images = []
for case in multi_case:
_images = []
for i in range(1, 4):
img = Image.open(f'assets/example_multi_image/{case}_{i}.png')
W, H = img.size
img = img.resize((int(W / H * 512), 512))
_images.append(np.array(img))
images.append(Image.fromarray(np.concatenate(_images, axis=1)))
return images
def split_image(image: Image.Image) -> List[Image.Image]:
"""
Split an image into multiple views.
"""
image = np.array(image)
alpha = image[..., 3]
alpha = np.any(alpha>0, axis=0)
start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
images = []
for s, e in zip(start_pos, end_pos):
images.append(Image.fromarray(image[:, s:e+1]))
return [preprocess_image(image) for image in images]
with gr.Blocks(delete_cache=(600, 600)) as demo:
gr.Markdown("""
## 3D Amodal Reconstruction with [Amodal3R](https://sm0kywu.github.io/Amodal3R/)
""")
with gr.Row():
gr.Markdown("""
### Step 1 - Generate Visibility Mask and Occlusion Mask.
* Please wait for a few seconds after uploading the image. The 2D segmenter is getting ready.
* Add the point prompts to indicate the target object and occluders separately.
* "Render Point", see the position of the point to be added.
* "Add Point", the point will be added to the list.
* "Generate mask", see the segmented area corresponding to current point list.
* "Add mask", current mask will be added for 3D amodal completion.
""")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="numpy", label='Input Occlusion Image', sources="upload", height=300)
with gr.Row():
message = gr.Markdown("Please wait a few seconds after uploading the image.", label="Message") # ็จไบๆพ็คบๆ็คบไฟกๆฏ
with gr.Row():
x_input = gr.Number(label="X Coordinate", value=0)
y_input = gr.Number(label="Y Coordinate", value=0)
with gr.Row():
see_button = gr.Button("Render Point")
add_button = gr.Button("Add Point")
with gr.Row():
clear_button = gr.Button("Clear Points")
see_visible_button = gr.Button("Render Added Points")
with gr.Row():
# ๆฐๅขๆๆฌๆกๅฎๆถๆพ็คบ็นๅ่กจ
points_text = gr.Textbox(label="Points List", interactive=False)
with gr.Row():
# ๆฐๅขไธๆ่ๅ๏ผ็จๆทๅฏ้ๆฉ้่ฆๅ ้ค็็น
visible_points_dropdown = gr.Dropdown(label="Select Point to Delete", choices=[], value=None, interactive=True)
delete_visible_button = gr.Button("Delete Selected Visible")
with gr.Column():
# ็จไบๆพ็คบ SAM ๅๅฒ็ปๆ
visible_mask = gr.Image(label='Visible Mask', interactive=False, height=300)
with gr.Row():
gen_vis_mask = gr.Button("Generate Mask")
add_vis_mask = gr.Button("Add Mask")
with gr.Row():
render_vis_mask = gr.Button("Render Mask")
undo_vis_mask = gr.Button("Undo Last Mask")
vis_input = gr.Image(label='Visible Input', interactive=False, height=300)
with gr.Row():
zoom_scale = gr.Slider(0.3, 1.0, label="Target Object Scale", value=0.6, step=0.1)
check_visible_input = gr.Button("Generate Occluded Input")
with gr.Row():
with gr.Column():
with gr.Tabs() as input_tabs:
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
mask_prompt = gr.Image(label="Mask Prompt", format="png", image_mode="L", type="pil", height=300)
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
generate_btn = gr.Button("Generate")
with gr.Accordion(label="GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
with gr.Row():
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
gr.Markdown("""
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
""")
with gr.Column():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
with gr.Row():
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
is_multiimage = gr.State(False)
output_buf = gr.State()
# Handlers
demo.load(start_session)
demo.unload(end_session)
# image_prompt.upload(
# lambda x:x,
# inputs=[image_prompt],
# outputs=[image_prompt],
# )
generate_btn.click(
get_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
).then(
image_to_3d,
inputs=[image_prompt, mask_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
outputs=[output_buf, video_output],
).then(
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
outputs=[extract_glb_btn, extract_gs_btn],
)
video_output.clear(
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
outputs=[extract_glb_btn, extract_gs_btn],
)
extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
).then(
lambda: gr.Button(interactive=True),
outputs=[download_glb],
)
extract_gs_btn.click(
extract_gaussian,
inputs=[output_buf],
outputs=[model_output, download_gs],
).then(
lambda: gr.Button(interactive=True),
outputs=[download_gs],
)
model_output.clear(
lambda: gr.Button(interactive=False),
outputs=[download_glb],
)
# Launch the Gradio app
if __name__ == "__main__":
pipeline = pipeline = Amodal3RImageTo3DPipeline.from_pretrained("Sm0kyWu/Amodal3R")
pipeline.cuda()
try:
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
except:
pass
demo.launch()
|