Spaces:
Runtime error
Runtime error
File size: 21,854 Bytes
afe5cdc 3ebf31b 5d5194a afe5cdc 5d5194a afe5cdc 3a1aea9 5d5194a afe5cdc 5d5194a afe5cdc 5d5194a c0be0df 5d5194a c0be0df 5d5194a 3ebf31b 5d5194a c0be0df 5d5194a c0be0df 5d5194a c0be0df b7fa320 81b4cc3 5d5194a 81b4cc3 ec4c704 81b4cc3 ec4c704 81b4cc3 588136e 3a1aea9 588136e 5d5194a 588136e 5d5194a 81b4cc3 5d5194a 81b4cc3 5d5194a 81b4cc3 5d5194a 81b4cc3 5d5194a 81b4cc3 5d5194a 81bc0d7 5d5194a 540680a afe5cdc 5d5194a afe5cdc 24cd589 5d5194a 24cd589 5d5194a 24cd589 5d5194a ec4c704 5d5194a ec4c704 c17faf0 5d5194a ec4c704 588136e 5d5194a 3ebf31b 5d5194a beb20dc 3ebf31b 5d5194a 2c544af 5d5194a d55609e c17faf0 5d5194a ec4c704 afe5cdc 5d5194a afe5cdc 5d5194a 81b4cc3 afe5cdc 5d5194a afe5cdc 5d5194a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 |
import gradio as gr
from gradio_litmodel3d import LitModel3D
import spaces
import os
import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from PIL import Image
from Amodal3R.pipelines import Amodal3RImageTo3DPipeline
from Amodal3R.representations import Gaussian, MeshExtractResult
from Amodal3R.utils import render_utils, postprocessing_utils
from segment_anything import sam_model_registry, SamPredictor
from huggingface_hub import hf_hub_download
import cv2
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
def start_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
shutil.rmtree(user_dir)
def reset_image(predictor, img):
"""
上传图像后调用:
- 重置 predictor,
- 设置 predictor 的输入图像,
- 返回原图
"""
predictor.set_image(img)
original_img = img.copy()
# 返回predictor,visible occlusion mask初始化, 原始图像
return predictor, original_img, "The models are ready."
def button_clickable(selected_points):
if len(selected_points) > 0:
return gr.Button.update(interactive=True)
else:
return gr.Button.update(interactive=False)
def run_sam(predictor, selected_points):
"""
调用 SAM 模型进行分割。
"""
# predictor.set_image(image)
if len(selected_points) == 0:
return [], None
input_points = [p for p in selected_points]
input_labels = [1 for _ in range(len(selected_points))]
masks, _, _ = predictor.predict(
point_coords=np.array(input_points),
point_labels=np.array(input_labels),
multimask_output=False, # 单对象输出
)
best_mask = masks[0].astype(np.uint8)
# dilate
if len(selected_points) > 1:
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
best_mask = cv2.dilate(best_mask, kernel, iterations=1)
best_mask = cv2.erode(best_mask, kernel, iterations=1)
return best_mask
def apply_mask_overlay(image, mask, color=(255, 0, 0)):
"""
在原图上叠加 mask:使用红色绘制 mask 的轮廓,非 mask 区域叠加浅灰色半透明遮罩。
"""
img_arr = image
overlay = img_arr.copy()
gray_color = np.array([200, 200, 200], dtype=np.uint8)
non_mask = mask == 0
overlay[non_mask] = (0.5 * overlay[non_mask] + 0.5 * gray_color).astype(np.uint8)
contours, _ = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(overlay, contours, -1, color, 2)
return overlay
def segment_and_overlay(image, points, sam_predictor):
"""
调用 run_sam 获得 mask,然后叠加显示分割结果。
"""
visible_mask = run_sam(sam_predictor, points)
overlaid = apply_mask_overlay(image, visible_mask * 255)
return overlaid, visible_mask
@spaces.GPU
def image_to_3d(
image: np.ndarray,
mask: np.ndarray,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
req: gr.Request,
) -> Tuple[dict, str]:
"""
Convert an image to a 3D model.
Args:
image (Image.Image): The input image.
multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode.
is_multiimage (bool): Whether is in multi-image mode.
seed (int): The random seed.
ss_guidance_strength (float): The guidance strength for sparse structure generation.
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
slat_guidance_strength (float): The guidance strength for structured latent generation.
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.
Returns:
dict: The information of the generated 3D model.
str: The path to the video of the 3D model.
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
outputs = pipeline.run_multi_image(
[image],
[mask],
seed=seed,
formats=["gaussian", "mesh"],
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
mode="stochastic",
)
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
video_path = os.path.join(user_dir, 'sample.mp4')
imageio.mimsave(video_path, video, fps=15)
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
torch.cuda.empty_cache()
return state, video_path
@spaces.GPU(duration=90)
def extract_glb(
state: dict,
mesh_simplify: float,
texture_size: int,
req: gr.Request,
) -> tuple:
"""
从生成的 3D 模型中提取 GLB 文件。
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
gs, mesh = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = os.path.join(user_dir, 'sample.glb')
glb.export(glb_path)
torch.cuda.empty_cache()
return glb_path, glb_path
@spaces.GPU
def extract_gaussian(state: dict, req: gr.Request) -> tuple:
"""
从生成的 3D 模型中提取 Gaussian 文件。
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
gs, _ = unpack_state(state)
gaussian_path = os.path.join(user_dir, 'sample.ply')
gs.save_ply(gaussian_path)
torch.cuda.empty_cache()
return gaussian_path, gaussian_path
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
}
def unpack_state(state: dict) -> tuple:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh
def get_sam_predictor():
sam_checkpoint = hf_hub_download("ybelkada/segment-anything", "checkpoints/sam_vit_h_4b8939.pth")
model_type = "vit_h"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam_predictor = SamPredictor(sam)
return sam_predictor
def draw_points_on_image(image, point):
"""在图像上绘制所有点,points 为 [(x, y, point_type), ...]"""
image_with_points = image.copy()
x, y = point
color = (255, 0, 0)
cv2.circle(image_with_points, (int(x), int(y)), radius=10, color=color, thickness=-1)
return image_with_points
def see_point(image, x, y):
"""
see操作:不修改 points 列表,仅在图像上临时显示这个点,
并返回更新后的图像和当前列表(不更新)。
"""
# 复制当前列表,并在副本中加上新点(仅用于显示)
updated_image = draw_points_on_image(image, [x,y])
return updated_image
def add_point(x, y, visible_points):
"""
add操作:将新点添加到 points 列表中,
并返回更新后的图像和新的点列表。
"""
if [x, y] not in visible_points:
visible_points.append([x, y])
return visible_points
def delete_point(visible_points):
"""
delete操作:删除 points 列表中的最后一个点,
并返回更新后的图像和新的点列表。
"""
visible_points.pop()
return visible_points
def clear_all_points(image):
"""
清除所有点:返回原图、空的 visible 和 occlusion 列表,
以及更新后的点文本信息和空下拉菜单列表。
"""
updated_image = image.copy()
return updated_image
def see_visible_points(image, visible_points):
"""
在图像上绘制所有 visible 点(红色)。
"""
updated_image = image.copy()
for p in visible_points:
cv2.circle(updated_image, (int(p[0]), int(p[1])), radius=10, color=(255, 0, 0), thickness=-1)
return updated_image
def update_all_points(visible_points):
text = f"Points: {visible_points}"
visible_dropdown_choices = [f"({p[0]}, {p[1]})" for p in visible_points]
# 返回更新字典来明确设置 choices 和 value
return text, gr.Dropdown(label="Select Point to Delete", choices=visible_dropdown_choices, value=None, interactive=True)
def delete_selected_visible(image, visible_points, selected_value):
# selected_value 是类似 "(x, y)" 的字符串
try:
selected_index = [f"({p[0]}, {p[1]})" for p in visible_points].index(selected_value)
except ValueError:
selected_index = None
if selected_index is not None and 0 <= selected_index < len(visible_points):
visible_points.pop(selected_index)
updated_image = image.copy()
# 重新绘制所有 visible 点(红色)
for p in visible_points:
cv2.circle(updated_image, (int(p[0]), int(p[1])), radius=10, color=(255, 0, 0), thickness=-1)
updated_text, vis_dropdown = update_all_points(visible_points)
return updated_image, visible_points, updated_text, vis_dropdown
def add_mask(mask, mask_list):
# check if the mask if same as the last mask in the list
if len(mask_list) > 0:
if np.array_equal(mask, mask_list[-1]):
return mask_list
mask_list.append(mask)
return mask_list
def vis_mask(image, mask_list):
updated_image = image.copy()
# combine all the mask:
combined_mask = np.zeros_like(updated_image[:, :, 0])
for mask in mask_list:
combined_mask = cv2.bitwise_or(combined_mask, mask)
# overlay the mask on the image
updated_image = apply_mask_overlay(updated_image, combined_mask)
return updated_image
def delete_mask(mask_list):
if len(mask_list) > 0:
mask_list.pop()
return mask_list
def check_combined_mask(image, visibility_mask, mask_list, scale=0.6):
updated_image = image.copy()
# combine all the mask:
combined_mask = np.zeros_like(updated_image[:, :, 0])
occluded_mask = np.zeros_like(updated_image[:, :, 0])
if len(mask_list) == 0:
combined_mask = visibility_mask
else:
for mask in mask_list:
combined_mask = cv2.bitwise_or(combined_mask, mask)
if len(mask_list) > 1:
kernel = np.ones((5, 5), np.uint8)
dilate_iterations = 1
combined_mask = cv2.dilate(combined_mask, kernel, iterations=dilate_iterations)
combined_mask = cv2.erode(combined_mask, kernel, iterations=dilate_iterations)
masked_img = updated_image * combined_mask[:, :, None]
occluded_mask[combined_mask == 1] = 127
# move the visible part to the center of the image
x, y, w, h = cv2.boundingRect(combined_mask.astype(np.uint8))
cropped_occluded_mask = (occluded_mask[y:y+h, x:x+w]).astype(np.uint8)
cropped_img = masked_img[y:y+h, x:x+w]
target_size = 512
scale_factor = target_size / max(w, h)
new_w = int(round(w * scale_factor * scale))
new_h = int(round(h * scale_factor * scale))
resized_occluded_mask = cv2.resize(cropped_occluded_mask.astype(np.uint8), (new_w, new_h), cv2.INTER_NEAREST)
resized_img = cv2.resize(cropped_img, (new_w, new_h), cv2.INTER_NEAREST)
final_img = np.zeros((target_size, target_size, 3), dtype=updated_image.dtype)
final_occluded_mask = np.zeros((target_size, target_size), dtype=np.uint8)
x_offset = (target_size - new_w) // 2
y_offset = (target_size - new_h) // 2
final_img[y_offset:y_offset+new_h, x_offset:x_offset+new_w] = resized_img
final_occluded_mask[y_offset:y_offset+new_h, x_offset:x_offset+new_w] = resized_occluded_mask
return final_img, final_occluded_mask
def get_seed(randomize_seed: bool, seed: int) -> int:
"""
Get the random seed.
"""
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
with gr.Blocks(delete_cache=(600, 600)) as demo:
gr.Markdown("""
## 3D Amodal Reconstruction with [Amodal3R](https://sm0kywu.github.io/Amodal3R/)
""")
# 定义各状态变量
predictor = gr.State(value=get_sam_predictor())
visible_points_state = gr.State(value=[])
occlusion_points_state = gr.State(value=[])
original_image = gr.State(value=None)
visibility_mask = gr.State(value=None)
visibility_mask_list = gr.State(value=[])
occluded_mask = gr.State(value=None)
output_buf = gr.State()
with gr.Row():
gr.Markdown("""* Step 1 - Generate Visibility Mask and Occlusion Mask.
* Please wait for a few seconds after uploading the image. The 2D segmenter is getting ready.
* Add the point prompts to indicate the target object and occluders separately.
* "Render Point", see the position of the point to be added.
* "Add Point", the point will be added to the list.
* "Generate mask", see the segmented area corresponding to current point list.
* "Add mask", current mask will be added for 3D amodal completion.
""")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="numpy", label='Input Occlusion Image', sources="upload", height=300)
with gr.Row():
message = gr.Markdown("Please wait a few seconds after uploading the image.", label="Message") # 用于显示提示信息
with gr.Row():
x_input = gr.Number(label="X Coordinate", value=0)
y_input = gr.Number(label="Y Coordinate", value=0)
with gr.Row():
see_button = gr.Button("Render Point")
add_button = gr.Button("Add Point")
with gr.Row():
clear_button = gr.Button("Clear Points")
see_visible_button = gr.Button("Render Added Points")
with gr.Row():
# 新增文本框实时显示点列表
points_text = gr.Textbox(label="Points List", interactive=False)
with gr.Row():
# 新增下拉菜单,用户可选择需要删除的点
visible_points_dropdown = gr.Dropdown(label="Select Point to Delete", choices=[], value=None, interactive=True)
delete_visible_button = gr.Button("Delete Selected Visible")
with gr.Column():
# 用于显示 SAM 分割结果
visible_mask = gr.Image(label='Visible Mask', interactive=False, height=300)
with gr.Row():
gen_vis_mask = gr.Button("Generate Mask")
add_vis_mask = gr.Button("Add Mask")
with gr.Row():
render_vis_mask = gr.Button("Render Mask")
undo_vis_mask = gr.Button("Undo Last Mask")
vis_input = gr.Image(label='Visible Input', interactive=False, height=300)
with gr.Row():
zoom_scale = gr.Slider(0.3, 1.0, label="Target Object Scale", value=0.6, step=0.1)
check_visible_input = gr.Button("Generate Occluded Input")
with gr.Row():
gr.Markdown("""* Step 2 - 3D Amodal Completion.
* Different random seeds can be tried in "Generation Settings", if you think the results are not ideal.
* If the reconstruction 3D asset is satisfactory, you can extract the GLB file and download it.
""")
with gr.Row():
with gr.Column():
with gr.Accordion(label="Generation Settings", open=True):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=1, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
generate_btn = gr.Button("Generate")
with gr.Column():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
# # Handlers
demo.load(start_session)
demo.unload(end_session)
# ---------------------------
# 原有交互逻辑(略)
# ---------------------------
input_image.upload(
reset_image,
[predictor, input_image],
[predictor, original_image, message],
)
see_button.click(
see_point,
inputs=[original_image, x_input, y_input],
outputs=[input_image]
)
add_button.click(
add_point,
inputs=[x_input, y_input, visible_points_state],
outputs=[visible_points_state]
)
# ---------------------------
# 新增的交互逻辑
# ---------------------------
clear_button.click(
clear_all_points,
inputs=[original_image],
outputs=[input_image]
)
see_visible_button.click(
see_visible_points,
inputs=[input_image, visible_points_state],
outputs=input_image
)
# 当 visible_points_state 或 occlusion_points_state 变化时,更新文本框和下拉菜单
visible_points_state.change(
update_all_points,
inputs=[visible_points_state],
outputs=[points_text, visible_points_dropdown]
)
delete_visible_button.click(
delete_selected_visible,
inputs=[input_image, visible_points_state, visible_points_dropdown],
outputs=[input_image, visible_points_state, points_text, visible_points_dropdown]
)
# 生成mask的逻辑
gen_vis_mask.click(
segment_and_overlay,
inputs=[original_image, visible_points_state, predictor],
outputs=[visible_mask, visibility_mask]
)
add_vis_mask.click(
add_mask,
inputs=[visibility_mask, visibility_mask_list],
outputs=[visibility_mask_list]
)
render_vis_mask.click(
vis_mask,
inputs=[original_image, visibility_mask_list],
outputs=[visible_mask]
)
undo_vis_mask.click(
delete_mask,
inputs=[visibility_mask_list],
outputs=[visibility_mask_list]
)
check_visible_input.click(
check_combined_mask,
inputs=[original_image, visibility_mask, visibility_mask_list, zoom_scale],
outputs=[vis_input, occluded_mask]
)
# 3D Amodal Reconstruction
# generate_btn.click(
# get_seed,
# inputs=[randomize_seed, seed],
# outputs=[seed],
# ).then(
# image_to_3d,
# inputs=[vis_input, occluded_mask, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
# outputs=[output_buf, video_output],
# )
generate_btn.click(
image_to_3d,
inputs=[vis_input, occluded_mask, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
outputs=[output_buf, video_output],
)
# 启动 Gradio App
if __name__ == "__main__":
pipeline = Amodal3RImageTo3DPipeline.from_pretrained("Sm0kyWu/Amodal3R")
pipeline.cuda()
try:
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
except:
pass
demo.launch() |