Spaces:
Paused
Paused
| # Imports | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| from transformers import pipeline | |
| from transformers.pipelines.audio_utils import ffmpeg_read | |
| import tempfile | |
| import os | |
| MODEL_NAME = "openai/whisper-large-v3-turbo" | |
| BATCH_SIZE = 8 | |
| device = 0 if torch.cuda.is_available() else "cpu" | |
| pipe = pipeline(task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device,) | |
| def transcribe(inputs, task): | |
| if inputs is None: | |
| raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
| text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] | |
| return text | |
| demo = gr.Blocks(theme=gr.themes.Ocean()) | |
| file_transcribe = gr.Interface( | |
| fn=transcribe, | |
| inputs=[ | |
| gr.Audio(sources="upload", type="filepath", label="Audio file"), | |
| gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), | |
| ], | |
| outputs="text", | |
| title="Whisper Large V3: Transcribe Audio", | |
| description=( | |
| "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the" | |
| f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files" | |
| " of arbitrary length." | |
| ), | |
| allow_flagging="never", | |
| ) | |
| with demo: | |
| gr.TabbedInterface([file_transcribe], ["Audio file"]) | |
| demo.queue().launch(ssr_mode=False) |