Spaces:
Sleeping
Sleeping
File size: 16,369 Bytes
894c3a3 5cd0c37 2d774d8 4be0bfd 7e08e15 2d774d8 5cd0c37 2d774d8 5cd0c37 894c3a3 e62d790 2d774d8 5cd0c37 2d774d8 5cd0c37 2d774d8 5cd0c37 2d774d8 5cd0c37 2d774d8 4be0bfd 2d774d8 5cd0c37 d16892e 5cd0c37 2d774d8 5cd0c37 894c3a3 d16892e 5867e70 d16892e 894c3a3 2d774d8 d16892e 2d774d8 5867e70 2d774d8 894c3a3 2d774d8 5cd0c37 894c3a3 2d774d8 5cd0c37 894c3a3 d16892e 5cd0c37 2d774d8 5cd0c37 894c3a3 2d774d8 7e08e15 5cd0c37 d16892e 5cd0c37 894c3a3 5cd0c37 894c3a3 2d774d8 5cd0c37 d16892e 5cd0c37 2d774d8 5cd0c37 894c3a3 5cd0c37 2d774d8 5cd0c37 d16892e 5cd0c37 2d774d8 5cd0c37 2d774d8 5cd0c37 2d774d8 5cd0c37 d16892e 5cd0c37 894c3a3 5cd0c37 4be0bfd 5cd0c37 2d774d8 5cd0c37 894c3a3 5cd0c37 2d774d8 4be0bfd 5cd0c37 2d774d8 5cd0c37 894c3a3 d16892e 5cd0c37 894c3a3 5cd0c37 2d774d8 5cd0c37 894c3a3 5cd0c37 d16892e 5cd0c37 894c3a3 5cd0c37 894c3a3 d16892e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
from fastapi import FastAPI, HTTPException, Header
from pydantic import BaseModel
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
import base64
import os
import logging
from datetime import datetime
from fastapi.responses import HTMLResponse
from simple_salesforce import Salesforce
from dotenv import load_dotenv
from datasets import load_dataset
# Load environment variables
load_dotenv()
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
app = FastAPI()
# Environment variables
SF_USERNAME = os.getenv("SF_USERNAME")
SF_PASSWORD = os.getenv("SF_PASSWORD")
SF_SECURITY_TOKEN = os.getenv("SF_SECURITY_TOKEN")
SF_DOMAIN = os.getenv("SF_DOMAIN", "login")
API_KEY = os.getenv("HUGGINGFACE_API_KEY")
# Validate environment variables
required_env_vars = ["SF_USERNAME", "SF_PASSWORD", "SF_SECURITY_TOKEN", "HUGGINGFACE_API_KEY"]
for var in required_env_vars:
if not os.getenv(var):
logger.error(f"Environment variable {var} is not set")
raise ValueError(f"Environment variable {var} is not set")
# Salesforce connection
sf = None
try:
sf = Salesforce(
username=SF_USERNAME,
password=SF_PASSWORD,
security_token=SF_SECURITY_TOKEN,
domain=SF_DOMAIN
)
logger.info("Successfully connected to Salesforce")
except Exception as e:
logger.error(f"Failed to connect to Salesforce: {str(e)}")
raise RuntimeError(f"Cannot connect to Salesforce: {str(e)}")
# VendorLog model
class VendorLog(BaseModel):
vendorLogId: str
vendorId: str
vendorRecordId: str
workDetails: str
qualityReport: str
incidentLog: str
workCompletionDate: str
actualCompletionDate: str
vendorLogName: str
delayDays: int
project: str
# Store vendor logs
vendor_logs = []
def validate_salesforce_fields():
"""Validate required Salesforce fields"""
try:
vendor_log_fields = [f['name'] for f in sf.Vendor_Log__c.describe()['fields']]
required_vendor_fields = [
'Vendor__c', 'Work_Completion_Percentage__c', 'Quality_Percentage__c',
'Incident_Severity__c', 'Work_Completion_Date__c', 'Actual_Completion_Date__c',
'Delay_Days__c', 'Project__c'
]
for field in required_vendor_fields:
if field not in vendor_log_fields:
logger.error(f"Field {field} not found in Vendor_Log__c")
raise ValueError(f"Field {field} not found in Vendor_Log__c")
score_fields = [f['name'] for f in sf.Subcontractor_Performance_Score__c.describe()['fields']]
required_score_fields = [
'Vendor_Log__c', 'Vendor__c', 'Quality_Score__c', 'Timeliness_Score__c',
'Safety_Score__c', 'Communication_Score__c', 'Alert_Flag__c', 'PDF_Link__c'
]
for field in required_score_fields:
if field not in score_fields:
logger.error(f"Field {field} not found in Subcontractor_Performance_Score__c")
raise ValueError(f"Field {field} not found in Subcontractor_Performance_Score__c")
logger.info("Salesforce fields validated successfully")
except Exception as e:
logger.error(f"Error validating Salesforce fields: {str(e)}")
raise
# Validate fields on startup
validate_salesforce_fields()
def fetch_huggingface_records(dataset_name: str = "imdb"):
"""Fetch records from a Hugging Face dataset."""
try:
os.environ["HUGGINGFACE_TOKEN"] = API_KEY
dataset = load_dataset(dataset_name)
logger.info(f"Successfully fetched dataset: {dataset_name}")
records = [record for record in dataset['train']] # Assuming 'train' split
return records[:10] # Limit to 10 records
except Exception as e:
logger.error(f"Error fetching Hugging Face dataset {dataset_name}: {str(e)}")
return []
def fetch_vendor_logs_from_salesforce():
"""Fetch vendor logs from Salesforce with null handling."""
try:
query = """
SELECT Id, Name, Vendor__c, Work_Completion_Percentage__c, Quality_Percentage__c,
Incident_Severity__c, Work_Completion_Date__c, Actual_Completion_Date__c,
Delay_Days__c, Project__c
FROM Vendor_Log__c
"""
result = sf.query_all(query)
logs = []
for record in result['records']:
if not record['Vendor__c']:
logger.warning(f"Skipping Vendor_Log__c record with ID {record['Id']} due to missing Vendor__c")
continue
# Handle null values for all fields
delay_days = record.get('Delay_Days__c', 0)
if delay_days is None:
logger.warning(f"Delay_Days__c is null for record ID {record['Id']}, defaulting to 0")
delay_days = 0
work_completion = record.get('Work_Completion_Percentage__c', 0.0)
if work_completion is None:
logger.warning(f"Work_Completion_Percentage__c is null for record ID {record['Id']}, defaulting to 0.0")
work_completion = 0.0
quality_percentage = record.get('Quality_Percentage__c', 0.0)
if quality_percentage is None:
logger.warning(f"Quality_Percentage__c is null for record ID {record['Id']}, defaulting to 0.0")
quality_percentage = 0.0
log = VendorLog(
vendorLogId=record.get('Id', 'Unknown'),
vendorId=record.get('Name', 'Unknown'),
vendorRecordId=record.get('Vendor__c', 'Unknown'),
workDetails=str(work_completion),
qualityReport=str(quality_percentage),
incidentLog=record.get('Incident_Severity__c', 'None'),
workCompletionDate=record.get('Work_Completion_Date__c', 'N/A'),
actualCompletionDate=record.get('Actual_Completion_Date__c', 'N/A'),
vendorLogName=record.get('Name', 'Unknown'),
delayDays=int(delay_days),
project=record.get('Project__c', 'Unknown')
)
logs.append(log)
logger.info(f"Fetched {len(logs)} vendor logs")
return logs
except Exception as e:
logger.error(f"Error fetching vendor logs from Salesforce: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error fetching vendor logs: {str(e)}")
def calculate_scores(log: VendorLog):
"""Calculate vendor performance scores."""
try:
work_completion_percentage = float(log.workDetails or 0.0)
quality_percentage = float(log.qualityReport or 0.0)
quality_score = quality_percentage
timeliness_score = 100.0 if log.delayDays <= 0 else 80.0 if log.delayDays <= 3 else 60.0 if log.delayDays <= 7 else 40.0
severity_map = {'None': 100.0, 'Low': 80.0, 'Minor': 80.0, 'Medium': 50.0, 'High': 20.0}
safety_score = severity_map.get(log.incidentLog, 100.0)
communication_score = (quality_score * 0.33 + timeliness_score * 0.33 + safety_score * 0.33)
return {
'qualityScore': round(quality_score, 2),
'timelinessScore': round(timeliness_score, 2),
'safetyScore': round(safety_score, 2),
'communicationScore': round(communication_score, 2)
}
except Exception as e:
logger.error(f"Error calculating scores: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error calculating scores: {str(e)}")
def get_feedback(score: float, metric: str) -> str:
"""Generate feedback based on score and metric."""
try:
if score >= 90:
return "Excellent: Maintain this standard"
elif score >= 70:
return "Good: Keep up the good work"
elif score >= 50:
if metric == 'Timeliness':
return "Needs Improvement: Maintain schedules to complete tasks on time"
elif metric == 'Safety':
return "Needs Improvement: Implement stricter safety protocols"
elif metric == 'Quality':
return "Needs Improvement: Focus on improving work quality"
else:
return "Needs Improvement: Enhance coordination with project teams"
else:
if metric == 'Timeliness':
return "Poor: Significant delays detected"
elif metric == 'Safety':
return "Poor: Critical safety issues identified"
elif metric == 'Quality':
return "Poor: Quality standards not met"
else:
return "Poor: Communication issues detected"
except Exception as e:
logger.error(f"Error generating feedback: {str(e)}")
return "Feedback unavailable"
def generate_pdf(vendor_id: str, vendor_log_name: str, scores: dict):
"""Generate a PDF report for vendor performance."""
try:
filename = f'report_{vendor_id}_{datetime.now().strftime("%Y%m%d%H%M%S")}.pdf'
c = canvas.Canvas(filename, pagesize=letter)
c.setFont('Helvetica', 12)
c.drawString(100, 750, 'Subcontractor Performance Report')
c.drawString(100, 730, f'Vendor ID: {vendor_id}')
c.drawString(100, 710, f'Vendor Log Name: {vendor_log_name}')
c.drawString(100, 690, f'Quality Score: {scores["qualityScore"]}% ({get_feedback(scores["qualityScore"], "Quality")})')
c.drawString(100, 670, f'Timeliness Score: {scores["timelinessScore"]}% ({get_feedback(scores["timelinessScore"], "Timeliness")})')
c.drawString(100, 650, f'Safety Score: {scores["safetyScore"]}% ({get_feedback(scores["safetyScore"], "Safety")})')
c.drawString(100, 630, f'Communication Score: {scores["communicationScore"]}% ({get_feedback(scores["communicationScore"], "Communication")})')
c.save()
with open(filename, 'rb') as f:
pdf_content = f.read()
os.remove(filename)
return pdf_content
except Exception as e:
logger.error(f"Error generating PDF: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error generating PDF: {str(e)}")
def determine_alert_flag(scores: dict, all_logs: list):
"""Determine if an alert flag should be set."""
try:
if not all_logs:
return False
avg_score = sum(scores.values()) / 4
if avg_score < 50:
return True
lowest_avg = min([sum(log['scores'].values()) / 4 for log in all_logs], default=avg_score)
return avg_score == lowest_avg
except Exception as e:
logger.error(f"Error determining alert flag: {str(e)}")
return False
def store_scores_in_salesforce(log: VendorLog, scores: dict, pdf_content: bytes, alert_flag: bool):
"""Store scores and PDF in Salesforce."""
try:
score_record = sf.Subcontractor_Performance_Score__c.create({
'Vendor_Log__c': log.vendorLogId,
'Vendor__c': log.vendorRecordId,
'Quality_Score__c': scores['qualityScore'],
'Timeliness_Score__c': scores['timelinessScore'],
'Safety_Score__c': scores['safetyScore'],
'Communication_Score__c': scores['communicationScore'],
'Alert_Flag__c': alert_flag
})
score_record_id = score_record['id']
logger.info(f"Created Subcontractor_Performance_Score__c record with ID: {score_record_id}")
pdf_base64 = base64.b64encode(pdf_content).decode('utf-8')
content_version = sf.ContentVersion.create({
'Title': f'Performance_Report_{log.vendorId}',
'PathOnClient': f'report_{log.vendorId}.pdf',
'VersionData': pdf_base64,
'FirstPublishLocationId': score_record_id
})
content_version_id = content_version['id']
content_version_record = sf.query(f"SELECT ContentDocumentId FROM ContentVersion WHERE Id = '{content_version_id}'")
if content_version_record['totalSize'] == 0:
logger.error(f"No ContentVersion for ID: {content_version_id}")
raise ValueError("Failed to retrieve ContentDocumentId")
content_document_id = content_version_record['records'][0]['ContentDocumentId']
pdf_url = f"https://{sf.sf_instance}/sfc/servlet.shepherd/document/download/{content_document_id}"
sf.Subcontractor_Performance_Score__c.update(score_record_id, {'PDF_Link__c': pdf_url})
logger.info(f"Updated Subcontractor_Performance_Score__c record with PDF URL: {pdf_url}")
except Exception as e:
logger.error(f"Error storing scores in Salesforce: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error storing scores: {str(e)}")
@app.post('/score')
async def score_vendor(log: VendorLog, authorization: str = Header(...)):
"""Score a vendor and generate a PDF report."""
try:
logger.info(f"Received Vendor Log: {log}")
if authorization != f'Bearer {API_KEY}':
raise HTTPException(status_code=401, detail='Invalid API key')
scores = calculate_scores(log)
pdf_content = generate_pdf(log.vendorId, log.vendorLogName, scores)
pdf_base64 = base64.b64encode(pdf_content).decode('utf-8')
alert_flag = determine_alert_flag(scores, vendor_logs)
store_scores_in_salesforce(log, scores, pdf_content, alert_flag)
vendor_logs.append({
'vendorLogId': log.vendorLogId,
'vendorId': log.vendorId,
'vendorLogName': log.vendorLogName,
'workDetails': log.workDetails,
'qualityReport': log.qualityReport,
'incidentLog': log.incidentLog,
'workCompletionDate': log.workCompletionDate,
'actualCompletionDate': log.actualCompletionDate,
'delayDays': log.delayDays,
'project': log.project,
'scores': scores,
'extracted': True
})
return {
'vendorLogId': log.vendorLogId,
'vendorId': log.vendorId,
'vendorLogName': log.vendorLogName,
'qualityScore': scores['qualityScore'],
'timelinessScore': scores['timelinessScore'],
'safetyScore': scores['safetyScore'],
'communicationScore': scores['communicationScore'],
'pdfContent': pdf_base64,
'alert': alert_flag
}
except HTTPException as e:
raise
except Exception as e:
logger.error(f"Error in /score endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error processing vendor log: {str(e)}")
@app.get('/', response_class=HTMLResponse)
async def get_dashboard():
"""Render the dashboard with vendor logs and scores."""
try:
global vendor_logs
fetched_logs = fetch_vendor_logs_from_salesforce()
for log in fetched_logs:
if not any(existing_log['vendorLogId'] == log.vendorLogId for existing_log in vendor_logs):
scores = calculate_scores(log)
pdf_content = generate_pdf(log.vendorId, log.vendorLogName, scores)
pdf_base64 = base64.b64encode(pdf_content).decode('utf-8')
alert_flag = determine_alert_flag(scores, vendor_logs)
store_scores_in_salesforce(log, scores, pdf_content, alert_flag)
vendor_logs.append({
'vendorLogId': log.vendorLogId,
'vendorId': log.vendorId,
'vendorLogName': log.vendorLogName,
'workDetails': log.workDetails,
'qualityReport': log.qualityReport,
'incidentLog': log.incidentLog,
'workCompletionDate': log.workCompletionDate,
'actualCompletionDate': log.actualCompletionDate,
'delayDays': log.delayDays,
'project': log.project,
'scores': scores,
'extracted': True
})
html_content = """
<html>
<head>
<title>Subcontractor Performance Score App</title>
<style>
body { font-family: Arial, sans-serif; margin: 20px; }
table { width: 100%; border-collapse: collapse; margin-top: 20px; } |