File size: 16,369 Bytes
894c3a3
5cd0c37
 
 
 
 
 
 
 
 
2d774d8
4be0bfd
7e08e15
2d774d8
 
 
 
 
5cd0c37
 
 
 
2d774d8
 
 
 
5cd0c37
894c3a3
e62d790
2d774d8
 
 
 
 
 
 
 
 
5cd0c37
 
 
 
 
 
 
 
 
 
2d774d8
5cd0c37
2d774d8
5cd0c37
 
 
 
 
 
 
 
 
 
 
 
 
2d774d8
5cd0c37
 
2d774d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4be0bfd
2d774d8
 
 
 
5cd0c37
d16892e
5cd0c37
 
2d774d8
 
 
5cd0c37
 
 
 
 
894c3a3
 
 
d16892e
 
5867e70
 
 
d16892e
 
 
 
 
 
 
 
894c3a3
2d774d8
 
 
d16892e
 
2d774d8
 
 
 
5867e70
2d774d8
894c3a3
 
2d774d8
5cd0c37
 
894c3a3
2d774d8
5cd0c37
894c3a3
d16892e
5cd0c37
2d774d8
 
5cd0c37
 
 
 
 
 
 
 
 
 
 
 
 
 
894c3a3
2d774d8
7e08e15
5cd0c37
d16892e
5cd0c37
 
 
 
 
 
894c3a3
 
 
 
 
 
 
 
5cd0c37
894c3a3
 
 
 
 
 
 
 
 
 
2d774d8
5cd0c37
 
d16892e
5cd0c37
2d774d8
5cd0c37
 
 
 
 
 
 
 
 
 
894c3a3
5cd0c37
 
 
 
 
 
2d774d8
5cd0c37
 
d16892e
5cd0c37
 
 
2d774d8
5cd0c37
 
2d774d8
5cd0c37
 
 
2d774d8
5cd0c37
 
d16892e
5cd0c37
 
894c3a3
5cd0c37
 
 
 
 
 
 
 
4be0bfd
5cd0c37
 
 
 
 
 
 
 
 
 
2d774d8
 
 
5cd0c37
894c3a3
5cd0c37
2d774d8
4be0bfd
5cd0c37
 
2d774d8
5cd0c37
 
894c3a3
d16892e
5cd0c37
894c3a3
 
 
 
5cd0c37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d774d8
 
5cd0c37
894c3a3
5cd0c37
 
 
 
d16892e
5cd0c37
 
 
 
 
 
 
894c3a3
5cd0c37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
894c3a3
d16892e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
from fastapi import FastAPI, HTTPException, Header
from pydantic import BaseModel
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
import base64
import os
import logging
from datetime import datetime
from fastapi.responses import HTMLResponse
from simple_salesforce import Salesforce
from dotenv import load_dotenv
from datasets import load_dataset

# Load environment variables
load_dotenv()

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

app = FastAPI()

# Environment variables
SF_USERNAME = os.getenv("SF_USERNAME")
SF_PASSWORD = os.getenv("SF_PASSWORD")
SF_SECURITY_TOKEN = os.getenv("SF_SECURITY_TOKEN")
SF_DOMAIN = os.getenv("SF_DOMAIN", "login")
API_KEY = os.getenv("HUGGINGFACE_API_KEY")

# Validate environment variables
required_env_vars = ["SF_USERNAME", "SF_PASSWORD", "SF_SECURITY_TOKEN", "HUGGINGFACE_API_KEY"]
for var in required_env_vars:
    if not os.getenv(var):
        logger.error(f"Environment variable {var} is not set")
        raise ValueError(f"Environment variable {var} is not set")

# Salesforce connection
sf = None
try:
    sf = Salesforce(
        username=SF_USERNAME,
        password=SF_PASSWORD,
        security_token=SF_SECURITY_TOKEN,
        domain=SF_DOMAIN
    )
    logger.info("Successfully connected to Salesforce")
except Exception as e:
    logger.error(f"Failed to connect to Salesforce: {str(e)}")
    raise RuntimeError(f"Cannot connect to Salesforce: {str(e)}")

# VendorLog model
class VendorLog(BaseModel):
    vendorLogId: str
    vendorId: str
    vendorRecordId: str
    workDetails: str
    qualityReport: str
    incidentLog: str
    workCompletionDate: str
    actualCompletionDate: str
    vendorLogName: str
    delayDays: int
    project: str

# Store vendor logs
vendor_logs = []

def validate_salesforce_fields():
    """Validate required Salesforce fields"""
    try:
        vendor_log_fields = [f['name'] for f in sf.Vendor_Log__c.describe()['fields']]
        required_vendor_fields = [
            'Vendor__c', 'Work_Completion_Percentage__c', 'Quality_Percentage__c',
            'Incident_Severity__c', 'Work_Completion_Date__c', 'Actual_Completion_Date__c',
            'Delay_Days__c', 'Project__c'
        ]
        for field in required_vendor_fields:
            if field not in vendor_log_fields:
                logger.error(f"Field {field} not found in Vendor_Log__c")
                raise ValueError(f"Field {field} not found in Vendor_Log__c")

        score_fields = [f['name'] for f in sf.Subcontractor_Performance_Score__c.describe()['fields']]
        required_score_fields = [
            'Vendor_Log__c', 'Vendor__c', 'Quality_Score__c', 'Timeliness_Score__c',
            'Safety_Score__c', 'Communication_Score__c', 'Alert_Flag__c', 'PDF_Link__c'
        ]
        for field in required_score_fields:
            if field not in score_fields:
                logger.error(f"Field {field} not found in Subcontractor_Performance_Score__c")
                raise ValueError(f"Field {field} not found in Subcontractor_Performance_Score__c")
        logger.info("Salesforce fields validated successfully")
    except Exception as e:
        logger.error(f"Error validating Salesforce fields: {str(e)}")
        raise

# Validate fields on startup
validate_salesforce_fields()

def fetch_huggingface_records(dataset_name: str = "imdb"):
    """Fetch records from a Hugging Face dataset."""
    try:
        os.environ["HUGGINGFACE_TOKEN"] = API_KEY
        dataset = load_dataset(dataset_name)
        logger.info(f"Successfully fetched dataset: {dataset_name}")
        records = [record for record in dataset['train']]  # Assuming 'train' split
        return records[:10]  # Limit to 10 records
    except Exception as e:
        logger.error(f"Error fetching Hugging Face dataset {dataset_name}: {str(e)}")
        return []

def fetch_vendor_logs_from_salesforce():
    """Fetch vendor logs from Salesforce with null handling."""
    try:
        query = """
        SELECT Id, Name, Vendor__c, Work_Completion_Percentage__c, Quality_Percentage__c, 
               Incident_Severity__c, Work_Completion_Date__c, Actual_Completion_Date__c, 
               Delay_Days__c, Project__c
        FROM Vendor_Log__c
        """
        result = sf.query_all(query)
        logs = []
        for record in result['records']:
            if not record['Vendor__c']:
                logger.warning(f"Skipping Vendor_Log__c record with ID {record['Id']} due to missing Vendor__c")
                continue
            # Handle null values for all fields
            delay_days = record.get('Delay_Days__c', 0)
            if delay_days is None:
                logger.warning(f"Delay_Days__c is null for record ID {record['Id']}, defaulting to 0")
                delay_days = 0
            work_completion = record.get('Work_Completion_Percentage__c', 0.0)
            if work_completion is None:
                logger.warning(f"Work_Completion_Percentage__c is null for record ID {record['Id']}, defaulting to 0.0")
                work_completion = 0.0
            quality_percentage = record.get('Quality_Percentage__c', 0.0)
            if quality_percentage is None:
                logger.warning(f"Quality_Percentage__c is null for record ID {record['Id']}, defaulting to 0.0")
                quality_percentage = 0.0
            log = VendorLog(
                vendorLogId=record.get('Id', 'Unknown'),
                vendorId=record.get('Name', 'Unknown'),
                vendorRecordId=record.get('Vendor__c', 'Unknown'),
                workDetails=str(work_completion),
                qualityReport=str(quality_percentage),
                incidentLog=record.get('Incident_Severity__c', 'None'),
                workCompletionDate=record.get('Work_Completion_Date__c', 'N/A'),
                actualCompletionDate=record.get('Actual_Completion_Date__c', 'N/A'),
                vendorLogName=record.get('Name', 'Unknown'),
                delayDays=int(delay_days),
                project=record.get('Project__c', 'Unknown')
            )
            logs.append(log)
        logger.info(f"Fetched {len(logs)} vendor logs")
        return logs
    except Exception as e:
        logger.error(f"Error fetching vendor logs from Salesforce: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error fetching vendor logs: {str(e)}")

def calculate_scores(log: VendorLog):
    """Calculate vendor performance scores."""
    try:
        work_completion_percentage = float(log.workDetails or 0.0)
        quality_percentage = float(log.qualityReport or 0.0)

        quality_score = quality_percentage
        timeliness_score = 100.0 if log.delayDays <= 0 else 80.0 if log.delayDays <= 3 else 60.0 if log.delayDays <= 7 else 40.0
        severity_map = {'None': 100.0, 'Low': 80.0, 'Minor': 80.0, 'Medium': 50.0, 'High': 20.0}
        safety_score = severity_map.get(log.incidentLog, 100.0)
        communication_score = (quality_score * 0.33 + timeliness_score * 0.33 + safety_score * 0.33)

        return {
            'qualityScore': round(quality_score, 2),
            'timelinessScore': round(timeliness_score, 2),
            'safetyScore': round(safety_score, 2),
            'communicationScore': round(communication_score, 2)
        }
    except Exception as e:
        logger.error(f"Error calculating scores: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error calculating scores: {str(e)}")

def get_feedback(score: float, metric: str) -> str:
    """Generate feedback based on score and metric."""
    try:
        if score >= 90:
            return "Excellent: Maintain this standard"
        elif score >= 70:
            return "Good: Keep up the good work"
        elif score >= 50:
            if metric == 'Timeliness':
                return "Needs Improvement: Maintain schedules to complete tasks on time"
            elif metric == 'Safety':
                return "Needs Improvement: Implement stricter safety protocols"
            elif metric == 'Quality':
                return "Needs Improvement: Focus on improving work quality"
            else:
                return "Needs Improvement: Enhance coordination with project teams"
        else:
            if metric == 'Timeliness':
                return "Poor: Significant delays detected"
            elif metric == 'Safety':
                return "Poor: Critical safety issues identified"
            elif metric == 'Quality':
                return "Poor: Quality standards not met"
            else:
                return "Poor: Communication issues detected"
    except Exception as e:
        logger.error(f"Error generating feedback: {str(e)}")
        return "Feedback unavailable"

def generate_pdf(vendor_id: str, vendor_log_name: str, scores: dict):
    """Generate a PDF report for vendor performance."""
    try:
        filename = f'report_{vendor_id}_{datetime.now().strftime("%Y%m%d%H%M%S")}.pdf'
        c = canvas.Canvas(filename, pagesize=letter)
        c.setFont('Helvetica', 12)
        c.drawString(100, 750, 'Subcontractor Performance Report')
        c.drawString(100, 730, f'Vendor ID: {vendor_id}')
        c.drawString(100, 710, f'Vendor Log Name: {vendor_log_name}')
        c.drawString(100, 690, f'Quality Score: {scores["qualityScore"]}% ({get_feedback(scores["qualityScore"], "Quality")})')
        c.drawString(100, 670, f'Timeliness Score: {scores["timelinessScore"]}% ({get_feedback(scores["timelinessScore"], "Timeliness")})')
        c.drawString(100, 650, f'Safety Score: {scores["safetyScore"]}% ({get_feedback(scores["safetyScore"], "Safety")})')
        c.drawString(100, 630, f'Communication Score: {scores["communicationScore"]}% ({get_feedback(scores["communicationScore"], "Communication")})')
        c.save()

        with open(filename, 'rb') as f:
            pdf_content = f.read()
        os.remove(filename)
        return pdf_content
    except Exception as e:
        logger.error(f"Error generating PDF: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error generating PDF: {str(e)}")

def determine_alert_flag(scores: dict, all_logs: list):
    """Determine if an alert flag should be set."""
    try:
        if not all_logs:
            return False
        avg_score = sum(scores.values()) / 4
        if avg_score < 50:
            return True
        lowest_avg = min([sum(log['scores'].values()) / 4 for log in all_logs], default=avg_score)
        return avg_score == lowest_avg
    except Exception as e:
        logger.error(f"Error determining alert flag: {str(e)}")
        return False

def store_scores_in_salesforce(log: VendorLog, scores: dict, pdf_content: bytes, alert_flag: bool):
    """Store scores and PDF in Salesforce."""
    try:
        score_record = sf.Subcontractor_Performance_Score__c.create({
            'Vendor_Log__c': log.vendorLogId,
            'Vendor__c': log.vendorRecordId,
            'Quality_Score__c': scores['qualityScore'],
            'Timeliness_Score__c': scores['timelinessScore'],
            'Safety_Score__c': scores['safetyScore'],
            'Communication_Score__c': scores['communicationScore'],
            'Alert_Flag__c': alert_flag
        })
        score_record_id = score_record['id']
        logger.info(f"Created Subcontractor_Performance_Score__c record with ID: {score_record_id}")

        pdf_base64 = base64.b64encode(pdf_content).decode('utf-8')
        content_version = sf.ContentVersion.create({
            'Title': f'Performance_Report_{log.vendorId}',
            'PathOnClient': f'report_{log.vendorId}.pdf',
            'VersionData': pdf_base64,
            'FirstPublishLocationId': score_record_id
        })
        content_version_id = content_version['id']
        content_version_record = sf.query(f"SELECT ContentDocumentId FROM ContentVersion WHERE Id = '{content_version_id}'")
        if content_version_record['totalSize'] == 0:
            logger.error(f"No ContentVersion for ID: {content_version_id}")
            raise ValueError("Failed to retrieve ContentDocumentId")
        content_document_id = content_version_record['records'][0]['ContentDocumentId']
        
        pdf_url = f"https://{sf.sf_instance}/sfc/servlet.shepherd/document/download/{content_document_id}"
        sf.Subcontractor_Performance_Score__c.update(score_record_id, {'PDF_Link__c': pdf_url})
        logger.info(f"Updated Subcontractor_Performance_Score__c record with PDF URL: {pdf_url}")
    except Exception as e:
        logger.error(f"Error storing scores in Salesforce: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error storing scores: {str(e)}")

@app.post('/score')
async def score_vendor(log: VendorLog, authorization: str = Header(...)):
    """Score a vendor and generate a PDF report."""
    try:
        logger.info(f"Received Vendor Log: {log}")
        if authorization != f'Bearer {API_KEY}':
            raise HTTPException(status_code=401, detail='Invalid API key')

        scores = calculate_scores(log)
        pdf_content = generate_pdf(log.vendorId, log.vendorLogName, scores)
        pdf_base64 = base64.b64encode(pdf_content).decode('utf-8')
        alert_flag = determine_alert_flag(scores, vendor_logs)
        store_scores_in_salesforce(log, scores, pdf_content, alert_flag)

        vendor_logs.append({
            'vendorLogId': log.vendorLogId,
            'vendorId': log.vendorId,
            'vendorLogName': log.vendorLogName,
            'workDetails': log.workDetails,
            'qualityReport': log.qualityReport,
            'incidentLog': log.incidentLog,
            'workCompletionDate': log.workCompletionDate,
            'actualCompletionDate': log.actualCompletionDate,
            'delayDays': log.delayDays,
            'project': log.project,
            'scores': scores,
            'extracted': True
        })

        return {
            'vendorLogId': log.vendorLogId,
            'vendorId': log.vendorId,
            'vendorLogName': log.vendorLogName,
            'qualityScore': scores['qualityScore'],
            'timelinessScore': scores['timelinessScore'],
            'safetyScore': scores['safetyScore'],
            'communicationScore': scores['communicationScore'],
            'pdfContent': pdf_base64,
            'alert': alert_flag
        }
    except HTTPException as e:
        raise
    except Exception as e:
        logger.error(f"Error in /score endpoint: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error processing vendor log: {str(e)}")

@app.get('/', response_class=HTMLResponse)
async def get_dashboard():
    """Render the dashboard with vendor logs and scores."""
    try:
        global vendor_logs
        fetched_logs = fetch_vendor_logs_from_salesforce()
        for log in fetched_logs:
            if not any(existing_log['vendorLogId'] == log.vendorLogId for existing_log in vendor_logs):
                scores = calculate_scores(log)
                pdf_content = generate_pdf(log.vendorId, log.vendorLogName, scores)
                pdf_base64 = base64.b64encode(pdf_content).decode('utf-8')
                alert_flag = determine_alert_flag(scores, vendor_logs)
                store_scores_in_salesforce(log, scores, pdf_content, alert_flag)
                vendor_logs.append({
                    'vendorLogId': log.vendorLogId,
                    'vendorId': log.vendorId,
                    'vendorLogName': log.vendorLogName,
                    'workDetails': log.workDetails,
                    'qualityReport': log.qualityReport,
                    'incidentLog': log.incidentLog,
                    'workCompletionDate': log.workCompletionDate,
                    'actualCompletionDate': log.actualCompletionDate,
                    'delayDays': log.delayDays,
                    'project': log.project,
                    'scores': scores,
                    'extracted': True
                })

        html_content = """
        <html>
            <head>
                <title>Subcontractor Performance Score App</title>
                <style>
                    body { font-family: Arial, sans-serif; margin: 20px; }
                    table { width: 100%; border-collapse: collapse; margin-top: 20px; }