Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, HTTPException, Header | |
from pydantic import BaseModel | |
from reportlab.lib.pagesizes import letter | |
from reportlab.pdfgen import canvas | |
import base64 | |
import os | |
import logging | |
from datetime import datetime | |
from fastapi.responses import HTMLResponse | |
from simple_salesforce import Salesforce | |
from dotenv import load_dotenv | |
from datasets import load_dataset | |
# Load environment variables | |
load_dotenv() | |
# Set up logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
logger = logging.getLogger(__name__) | |
app = FastAPI() | |
# Environment variables | |
SF_USERNAME = os.getenv("SF_USERNAME") | |
SF_PASSWORD = os.getenv("SF_PASSWORD") | |
SF_SECURITY_TOKEN = os.getenv("SF_SECURITY_TOKEN") | |
SF_DOMAIN = os.getenv("SF_DOMAIN", "login") | |
API_KEY = os.getenv("HUGGINGFACE_API_KEY") | |
# Validate environment variables | |
required_env_vars = ["SF_USERNAME", "SF_PASSWORD", "SF_SECURITY_TOKEN", "HUGGINGFACE_API_KEY"] | |
for var in required_env_vars: | |
if not os.getenv(var): | |
logger.error(f"Environment variable {var} is not set") | |
raise ValueError(f"Environment variable {var} is not set") | |
# Salesforce connection | |
sf = None | |
try: | |
sf = Salesforce( | |
username=SF_USERNAME, | |
password=SF_PASSWORD, | |
security_token=SF_SECURITY_TOKEN, | |
domain=SF_DOMAIN | |
) | |
logger.info("Successfully connected to Salesforce") | |
except Exception as e: | |
logger.error(f"Failed to connect to Salesforce: {str(e)}") | |
raise RuntimeError(f"Cannot connect to Salesforce: {str(e)}") | |
# VendorLog model | |
class VendorLog(BaseModel): | |
vendorLogId: str | |
vendorId: str | |
vendorRecordId: str | |
workDetails: str | |
qualityReport: str | |
incidentLog: str | |
workCompletionDate: str | |
actualCompletionDate: str | |
vendorLogName: str | |
delayDays: int | |
project: str | |
# Store vendor logs | |
vendor_logs = [] | |
def validate_salesforce_fields(): | |
"""Validate required Salesforce fields""" | |
try: | |
vendor_log_fields = [f['name'] for f in sf.Vendor_Log__c.describe()['fields']] | |
required_vendor_fields = [ | |
'Vendor__c', 'Work_Completion_Percentage__c', 'Quality_Percentage__c', | |
'Incident_Severity__c', 'Work_Completion_Date__c', 'Actual_Completion_Date__c', | |
'Delay_Days__c', 'Project__c' | |
] | |
for field in required_vendor_fields: | |
if field not in vendor_log_fields: | |
logger.error(f"Field {field} not found in Vendor_Log__c") | |
raise ValueError(f"Field {field} not found in Vendor_Log__c") | |
score_fields = [f['name'] for f in sf.Subcontractor_Performance_Score__c.describe()['fields']] | |
required_score_fields = [ | |
'Vendor_Log__c', 'Vendor__c', 'Quality_Score__c', 'Timeliness_Score__c', | |
'Safety_Score__c', 'Communication_Score__c', 'Alert_Flag__c', 'PDF_Link__c' | |
] | |
for field in required_score_fields: | |
if field not in score_fields: | |
logger.error(f"Field {field} not found in Subcontractor_Performance_Score__c") | |
raise ValueError(f"Field {field} not found in Subcontractor_Performance_Score__c") | |
logger.info("Salesforce fields validated successfully") | |
except Exception as e: | |
logger.error(f"Error validating Salesforce fields: {str(e)}") | |
raise | |
# Validate fields on startup | |
validate_salesforce_fields() | |
def fetch_huggingface_records(dataset_name: str = "imdb"): | |
"""Fetch records from a Hugging Face dataset.""" | |
try: | |
os.environ["HUGGINGFACE_TOKEN"] = API_KEY | |
dataset = load_dataset(dataset_name) | |
logger.info(f"Successfully fetched dataset: {dataset_name}") | |
records = [record for record in dataset['train']] # Assuming 'train' split | |
return records[:10] # Limit to 10 records | |
except Exception as e: | |
logger.error(f"Error fetching Hugging Face dataset {dataset_name}: {str(e)}") | |
return [] | |
def fetch_vendor_logs_from_salesforce(): | |
"""Fetch vendor logs from Salesforce with null handling.""" | |
try: | |
query = """ | |
SELECT Id, Name, Vendor__c, Work_Completion_Percentage__c, Quality_Percentage__c, | |
Incident_Severity__c, Work_Completion_Date__c, Actual_Completion_Date__c, | |
Delay_Days__c, Project__c | |
FROM Vendor_Log__c | |
""" | |
result = sf.query_all(query) | |
logs = [] | |
for record in result['records']: | |
if not record['Vendor__c']: | |
logger.warning(f"Skipping Vendor_Log__c record with ID {record['Id']} due to missing Vendor__c") | |
continue | |
# Handle null values for all fields | |
delay_days = record.get('Delay_Days__c', 0) | |
if delay_days is None: | |
logger.warning(f"Delay_Days__c is null for record ID {record['Id']}, defaulting to 0") | |
delay_days = 0 | |
work_completion = record.get('Work_Completion_Percentage__c', 0.0) | |
if work_completion is None: | |
logger.warning(f"Work_Completion_Percentage__c is null for record ID {record['Id']}, defaulting to 0.0") | |
work_completion = 0.0 | |
quality_percentage = record.get('Quality_Percentage__c', 0.0) | |
if quality_percentage is None: | |
logger.warning(f"Quality_Percentage__c is null for record ID {record['Id']}, defaulting to 0.0") | |
quality_percentage = 0.0 | |
log = VendorLog( | |
vendorLogId=record.get('Id', 'Unknown'), | |
vendorId=record.get('Name', 'Unknown'), | |
vendorRecordId=record.get('Vendor__c', 'Unknown'), | |
workDetails=str(work_completion), | |
qualityReport=str(quality_percentage), | |
incidentLog=record.get('Incident_Severity__c', 'None'), | |
workCompletionDate=record.get('Work_Completion_Date__c', 'N/A'), | |
actualCompletionDate=record.get('Actual_Completion_Date__c', 'N/A'), | |
vendorLogName=record.get('Name', 'Unknown'), | |
delayDays=int(delay_days), | |
project=record.get('Project__c', 'Unknown') | |
) | |
logs.append(log) | |
logger.info(f"Fetched {len(logs)} vendor logs") | |
return logs | |
except Exception as e: | |
logger.error(f"Error fetching vendor logs from Salesforce: {str(e)}") | |
raise HTTPException(status_code=500, detail=f"Error fetching vendor logs: {str(e)}") | |
def calculate_scores(log: VendorLog): | |
"""Calculate vendor performance scores.""" | |
try: | |
work_completion_percentage = float(log.workDetails or 0.0) | |
quality_percentage = float(log.qualityReport or 0.0) | |
quality_score = quality_percentage | |
timeliness_score = 100.0 if log.delayDays <= 0 else 80.0 if log.delayDays <= 3 else 60.0 if log.delayDays <= 7 else 40.0 | |
severity_map = {'None': 100.0, 'Low': 80.0, 'Minor': 80.0, 'Medium': 50.0, 'High': 20.0} | |
safety_score = severity_map.get(log.incidentLog, 100.0) | |
communication_score = (quality_score * 0.33 + timeliness_score * 0.33 + safety_score * 0.33) | |
return { | |
'qualityScore': round(quality_score, 2), | |
'timelinessScore': round(timeliness_score, 2), | |
'safetyScore': round(safety_score, 2), | |
'communicationScore': round(communication_score, 2) | |
} | |
except Exception as e: | |
logger.error(f"Error calculating scores: {str(e)}") | |
raise HTTPException(status_code=500, detail=f"Error calculating scores: {str(e)}") | |
def get_feedback(score: float, metric: str) -> str: | |
"""Generate feedback based on score and metric.""" | |
try: | |
if score >= 90: | |
return "Excellent: Maintain this standard" | |
elif score >= 70: | |
return "Good: Keep up the good work" | |
elif score >= 50: | |
if metric == 'Timeliness': | |
return "Needs Improvement: Maintain schedules to complete tasks on time" | |
elif metric == 'Safety': | |
return "Needs Improvement: Implement stricter safety protocols" | |
elif metric == 'Quality': | |
return "Needs Improvement: Focus on improving work quality" | |
else: | |
return "Needs Improvement: Enhance coordination with project teams" | |
else: | |
if metric == 'Timeliness': | |
return "Poor: Significant delays detected" | |
elif metric == 'Safety': | |
return "Poor: Critical safety issues identified" | |
elif metric == 'Quality': | |
return "Poor: Quality standards not met" | |
else: | |
return "Poor: Communication issues detected" | |
except Exception as e: | |
logger.error(f"Error generating feedback: {str(e)}") | |
return "Feedback unavailable" | |
def generate_pdf(vendor_id: str, vendor_log_name: str, scores: dict): | |
"""Generate a PDF report for vendor performance.""" | |
try: | |
filename = f'report_{vendor_id}_{datetime.now().strftime("%Y%m%d%H%M%S")}.pdf' | |
c = canvas.Canvas(filename, pagesize=letter) | |
c.setFont('Helvetica', 12) | |
c.drawString(100, 750, 'Subcontractor Performance Report') | |
c.drawString(100, 730, f'Vendor ID: {vendor_id}') | |
c.drawString(100, 710, f'Vendor Log Name: {vendor_log_name}') | |
c.drawString(100, 690, f'Quality Score: {scores["qualityScore"]}% ({get_feedback(scores["qualityScore"], "Quality")})') | |
c.drawString(100, 670, f'Timeliness Score: {scores["timelinessScore"]}% ({get_feedback(scores["timelinessScore"], "Timeliness")})') | |
c.drawString(100, 650, f'Safety Score: {scores["safetyScore"]}% ({get_feedback(scores["safetyScore"], "Safety")})') | |
c.drawString(100, 630, f'Communication Score: {scores["communicationScore"]}% ({get_feedback(scores["communicationScore"], "Communication")})') | |
c.save() | |
with open(filename, 'rb') as f: | |
pdf_content = f.read() | |
os.remove(filename) | |
return pdf_content | |
except Exception as e: | |
logger.error(f"Error generating PDF: {str(e)}") | |
raise HTTPException(status_code=500, detail=f"Error generating PDF: {str(e)}") | |
def determine_alert_flag(scores: dict, all_logs: list): | |
"""Determine if an alert flag should be set.""" | |
try: | |
if not all_logs: | |
return False | |
avg_score = sum(scores.values()) / 4 | |
if avg_score < 50: | |
return True | |
lowest_avg = min([sum(log['scores'].values()) / 4 for log in all_logs], default=avg_score) | |
return avg_score == lowest_avg | |
except Exception as e: | |
logger.error(f"Error determining alert flag: {str(e)}") | |
return False | |
def store_scores_in_salesforce(log: VendorLog, scores: dict, pdf_content: bytes, alert_flag: bool): | |
"""Store scores and PDF in Salesforce.""" | |
try: | |
score_record = sf.Subcontractor_Performance_Score__c.create({ | |
'Vendor_Log__c': log.vendorLogId, | |
'Vendor__c': log.vendorRecordId, | |
'Quality_Score__c': scores['qualityScore'], | |
'Timeliness_Score__c': scores['timelinessScore'], | |
'Safety_Score__c': scores['safetyScore'], | |
'Communication_Score__c': scores['communicationScore'], | |
'Alert_Flag__c': alert_flag | |
}) | |
score_record_id = score_record['id'] | |
logger.info(f"Created Subcontractor_Performance_Score__c record with ID: {score_record_id}") | |
pdf_base64 = base64.b64encode(pdf_content).decode('utf-8') | |
content_version = sf.ContentVersion.create({ | |
'Title': f'Performance_Report_{log.vendorId}', | |
'PathOnClient': f'report_{log.vendorId}.pdf', | |
'VersionData': pdf_base64, | |
'FirstPublishLocationId': score_record_id | |
}) | |
content_version_id = content_version['id'] | |
content_version_record = sf.query(f"SELECT ContentDocumentId FROM ContentVersion WHERE Id = '{content_version_id}'") | |
if content_version_record['totalSize'] == 0: | |
logger.error(f"No ContentVersion for ID: {content_version_id}") | |
raise ValueError("Failed to retrieve ContentDocumentId") | |
content_document_id = content_version_record['records'][0]['ContentDocumentId'] | |
pdf_url = f"https://{sf.sf_instance}/sfc/servlet.shepherd/document/download/{content_document_id}" | |
sf.Subcontractor_Performance_Score__c.update(score_record_id, {'PDF_Link__c': pdf_url}) | |
logger.info(f"Updated Subcontractor_Performance_Score__c record with PDF URL: {pdf_url}") | |
except Exception as e: | |
logger.error(f"Error storing scores in Salesforce: {str(e)}") | |
raise HTTPException(status_code=500, detail=f"Error storing scores: {str(e)}") | |
async def score_vendor(log: VendorLog, authorization: str = Header(...)): | |
"""Score a vendor and generate a PDF report.""" | |
try: | |
logger.info(f"Received Vendor Log: {log}") | |
if authorization != f'Bearer {API_KEY}': | |
raise HTTPException(status_code=401, detail='Invalid API key') | |
scores = calculate_scores(log) | |
pdf_content = generate_pdf(log.vendorId, log.vendorLogName, scores) | |
pdf_base64 = base64.b64encode(pdf_content).decode('utf-8') | |
alert_flag = determine_alert_flag(scores, vendor_logs) | |
store_scores_in_salesforce(log, scores, pdf_content, alert_flag) | |
vendor_logs.append({ | |
'vendorLogId': log.vendorLogId, | |
'vendorId': log.vendorId, | |
'vendorLogName': log.vendorLogName, | |
'workDetails': log.workDetails, | |
'qualityReport': log.qualityReport, | |
'incidentLog': log.incidentLog, | |
'workCompletionDate': log.workCompletionDate, | |
'actualCompletionDate': log.actualCompletionDate, | |
'delayDays': log.delayDays, | |
'project': log.project, | |
'scores': scores, | |
'extracted': True | |
}) | |
return { | |
'vendorLogId': log.vendorLogId, | |
'vendorId': log.vendorId, | |
'vendorLogName': log.vendorLogName, | |
'qualityScore': scores['qualityScore'], | |
'timelinessScore': scores['timelinessScore'], | |
'safetyScore': scores['safetyScore'], | |
'communicationScore': scores['communicationScore'], | |
'pdfContent': pdf_base64, | |
'alert': alert_flag | |
} | |
except HTTPException as e: | |
raise | |
except Exception as e: | |
logger.error(f"Error in /score endpoint: {str(e)}") | |
raise HTTPException(status_code=500, detail=f"Error processing vendor log: {str(e)}") | |
async def get_dashboard(): | |
"""Render the dashboard with vendor logs and scores.""" | |
try: | |
global vendor_logs | |
fetched_logs = fetch_vendor_logs_from_salesforce() | |
for log in fetched_logs: | |
if not any(existing_log['vendorLogId'] == log.vendorLogId for existing_log in vendor_logs): | |
scores = calculate_scores(log) | |
pdf_content = generate_pdf(log.vendorId, log.vendorLogName, scores) | |
pdf_base64 = base64.b64encode(pdf_content).decode('utf-8') | |
alert_flag = determine_alert_flag(scores, vendor_logs) | |
store_scores_in_salesforce(log, scores, pdf_content, alert_flag) | |
vendor_logs.append({ | |
'vendorLogId': log.vendorLogId, | |
'vendorId': log.vendorId, | |
'vendorLogName': log.vendorLogName, | |
'workDetails': log.workDetails, | |
'qualityReport': log.qualityReport, | |
'incidentLog': log.incidentLog, | |
'workCompletionDate': log.workCompletionDate, | |
'actualCompletionDate': log.actualCompletionDate, | |
'delayDays': log.delayDays, | |
'project': log.project, | |
'scores': scores, | |
'extracted': True | |
}) | |
html_content = """ | |
<html> | |
<head> | |
<title>Subcontractor Performance Score App</title> | |
<style> | |
body { font-family: Arial, sans-serif; margin: 20px; } | |
table { width: 100%; border-collapse: collapse; margin-top: 20px; } |