TTS-Arena / app.py
mrfakename's picture
Create app.py
40d676f verified
import gradio as gr
# from dotenv import load_dotenv
import os
from huggingface_hub import hf_hub_download
import pandas as pd
import sqlite3
# load_dotenv()
DB_DATASET_ID = os.getenv("DB_DATASET_ID")
DB_NAME = os.getenv("DB_NAME")
cache_path = hf_hub_download(repo_id=DB_DATASET_ID, repo_type='dataset', filename=DB_NAME, token=os.getenv("HF_TOKEN"))
# Model name mappings and metadata
closed_source = [
'ElevenLabs',
'Play.HT 2.0',
'Play.HT 3.0 Mini',
'PlayDialog',
'Papla P1',
'Hume Octave'
]
# Model name mapping, can include models that users cannot vote on
model_names = {
'styletts2': 'StyleTTS 2',
'tacotron': 'Tacotron',
'tacotronph': 'Tacotron Phoneme',
'tacotrondca': 'Tacotron DCA',
'speedyspeech': 'Speedy Speech',
'overflow': 'Overflow TTS',
'anonymoussparkle': 'Anonymous Sparkle',
'vits': 'VITS',
'vitsneon': 'VITS Neon',
'neuralhmm': 'Neural HMM',
'glow': 'Glow TTS',
'fastpitch': 'FastPitch',
'jenny': 'Jenny',
'tortoise': 'Tortoise TTS',
'xtts2': 'Coqui XTTSv2',
'xtts': 'Coqui XTTS',
'openvoice': 'MyShell OpenVoice',
'elevenlabs': 'ElevenLabs',
'openai': 'OpenAI',
'hierspeech': 'HierSpeech++',
'pheme': 'PolyAI Pheme',
'speecht5': 'SpeechT5',
'metavoice': 'MetaVoice-1B',
}
model_links = {
'ElevenLabs': 'https://elevenlabs.io/',
'Play.HT 2.0': 'https://play.ht/',
'Play.HT 3.0 Mini': 'https://play.ht/',
'XTTSv2': 'https://huggingface.co/coqui/XTTS-v2',
'MeloTTS': 'https://github.com/myshell-ai/MeloTTS',
'StyleTTS 2': 'https://github.com/yl4579/StyleTTS2',
'Parler TTS Large': 'https://github.com/huggingface/parler-tts',
'Parler TTS': 'https://github.com/huggingface/parler-tts',
'Fish Speech v1.5': 'https://github.com/fishaudio/fish-speech',
'Fish Speech v1.4': 'https://github.com/fishaudio/fish-speech',
'GPT-SoVITS': 'https://github.com/RVC-Boss/GPT-SoVITS',
'WhisperSpeech': 'https://github.com/WhisperSpeech/WhisperSpeech',
'VoiceCraft 2.0': 'https://github.com/jasonppy/VoiceCraft',
'PlayDialog': 'https://play.ht/',
'Kokoro v0.19': 'https://huggingface.co/hexgrad/Kokoro-82M',
'Kokoro v1.0': 'https://huggingface.co/hexgrad/Kokoro-82M',
'CosyVoice 2.0': 'https://github.com/FunAudioLLM/CosyVoice',
'MetaVoice': 'https://github.com/metavoiceio/metavoice-src',
'OpenVoice': 'https://github.com/myshell-ai/OpenVoice',
'OpenVoice V2': 'https://github.com/myshell-ai/OpenVoice',
'Pheme': 'https://github.com/PolyAI-LDN/pheme',
'Vokan TTS': 'https://huggingface.co/ShoukanLabs/Vokan',
'Papla P1': 'https://papla.media',
'Hume Octave': 'https://www.hume.ai'
}
def get_db():
conn = sqlite3.connect(cache_path)
return conn
def get_leaderboard(reveal_prelim=False, hide_battle_votes=False, sort_by_elo=True, hide_proprietary=False):
conn = get_db()
cursor = conn.cursor()
if hide_battle_votes:
sql = '''
SELECT m.name,
SUM(CASE WHEN v.username NOT LIKE '%_battle' AND v.vote = 1 THEN 1 ELSE 0 END) as upvote,
SUM(CASE WHEN v.username NOT LIKE '%_battle' AND v.vote = -1 THEN 1 ELSE 0 END) as downvote
FROM model m
LEFT JOIN vote v ON m.name = v.model
GROUP BY m.name
'''
else:
sql = '''
SELECT name,
SUM(CASE WHEN vote = 1 THEN 1 ELSE 0 END) as upvote,
SUM(CASE WHEN vote = -1 THEN 1 ELSE 0 END) as downvote
FROM model
LEFT JOIN vote ON model.name = vote.model
GROUP BY name
'''
cursor.execute(sql)
data = cursor.fetchall()
df = pd.DataFrame(data, columns=['name', 'upvote', 'downvote'])
df['name'] = df['name'].replace(model_names).replace('Anonymous Sparkle', 'Fish Speech v1.5')
# Calculate total votes and win rate
df['votes'] = df['upvote'] + df['downvote']
df['win_rate'] = (df['upvote'] / df['votes'] * 100).round(1)
# Remove models with no votes
df = df[df['votes'] > 0]
# Filter out rows with insufficient votes if not revealing preliminary results
if not reveal_prelim:
df = df[df['votes'] > 500]
## Calculate ELO SCORE (kept as secondary metric)
df['elo'] = 1200
for i in range(len(df)):
for j in range(len(df)):
if i != j:
try:
expected_a = 1 / (1 + 10 ** ((df['elo'].iloc[j] - df['elo'].iloc[i]) / 400))
expected_b = 1 / (1 + 10 ** ((df['elo'].iloc[i] - df['elo'].iloc[j]) / 400))
actual_a = df['upvote'].iloc[i] / df['votes'].iloc[i] if df['votes'].iloc[i] > 0 else 0.5
actual_b = df['upvote'].iloc[j] / df['votes'].iloc[j] if df['votes'].iloc[j] > 0 else 0.5
df.iloc[i, df.columns.get_loc('elo')] += 32 * (actual_a - expected_a)
df.iloc[j, df.columns.get_loc('elo')] += 32 * (actual_b - expected_b)
except Exception as e:
print(f"Error in ELO calculation for rows {i} and {j}: {str(e)}")
continue
df['elo'] = round(df['elo'])
# Sort based on user preference
sort_column = 'elo' if sort_by_elo else 'win_rate'
df = df.sort_values(by=sort_column, ascending=False)
df['order'] = ['#' + str(i + 1) for i in range(len(df))]
# Select and order columns for display
df = df[['order', 'name', 'win_rate', 'votes', 'elo']]
# Remove proprietary models if filter is enabled
if hide_proprietary:
df = df[~df['name'].isin(closed_source)]
# Convert DataFrame to markdown table with CSS styling
markdown_table = """
<style>
/* Reset any Gradio table styles */
.leaderboard-table,
.leaderboard-table th,
.leaderboard-table td {
border: none !important;
border-collapse: separate !important;
border-spacing: 0 !important;
}
.leaderboard-container {
background: var(--background-fill-primary);
border: 1px solid var(--border-color-primary);
border-radius: 12px;
padding: 4px;
margin: 10px 0;
width: 100%;
overflow-x: auto; /* Enable horizontal scroll */
}
.leaderboard-scroll {
max-height: 600px;
overflow-y: auto;
border-radius: 8px;
}
.leaderboard-table {
width: 100%;
border-spacing: 0;
border-collapse: separate;
font-size: 15px;
line-height: 1.5;
table-layout: auto; /* Allow flexible column widths */
}
.leaderboard-table th {
background: var(--background-fill-secondary);
color: var(--body-text-color);
font-weight: 600;
text-align: left;
padding: 12px 16px;
position: sticky;
top: 0;
z-index: 1;
}
.leaderboard-table th:after {
content: '';
position: absolute;
left: 0;
bottom: 0;
width: 100%;
border-bottom: 1px solid var(--border-color-primary);
}
.leaderboard-table td {
padding: 12px 16px;
color: var(--body-text-color);
}
.leaderboard-table tr td {
border-bottom: 1px solid var(--border-color-primary);
}
.leaderboard-table tr:last-child td {
border-bottom: none;
}
.leaderboard-table tr:hover td {
background: var(--background-fill-secondary);
}
/* Column-specific styles */
.leaderboard-table .col-rank {
width: 70px;
min-width: 70px; /* Prevent rank from shrinking */
}
.leaderboard-table .col-model {
min-width: 200px; /* Minimum width before scrolling */
}
.leaderboard-table .col-winrate {
width: 100px;
min-width: 100px; /* Prevent win rate from shrinking */
}
.leaderboard-table .col-votes {
width: 100px;
min-width: 100px; /* Prevent votes from shrinking */
}
.leaderboard-table .col-arena {
width: 100px;
min-width: 100px; /* Prevent arena score from shrinking */
}
.win-rate {
display: inline-block;
font-weight: 600;
padding: 4px 8px;
border-radius: 6px;
min-width: 65px;
text-align: center;
}
.win-rate-excellent {
background-color: var(--color-accent);
color: var(--color-accent-foreground);
}
.win-rate-good {
background-color: var(--color-accent-soft);
color: var(--body-text-color);
}
.win-rate-average {
background-color: var(--background-fill-secondary);
color: var(--body-text-color);
border: 1px solid var(--border-color-primary);
}
.win-rate-below {
background-color: var(--error-background-fill);
color: var(--body-text-color);
}
.model-link {
color: var(--body-text-color) !important;
text-decoration: none !important;
border-bottom: 2px dashed rgba(128, 128, 128, 0.3);
}
.model-link:hover {
color: var(--color-accent) !important;
border-bottom-color: var(--color-accent) !important;
}
.proprietary-badge {
display: inline-block;
font-size: 12px;
padding: 2px 6px;
border-radius: 4px;
background-color: var(--background-fill-secondary);
color: var(--body-text-color);
margin-left: 6px;
border: 1px solid var(--border-color-primary);
}
/* New Arena V2 Pointer */
.arena-v2-pointer {
display: block;
margin: 20px auto;
padding: 20px;
text-align: center;
border-radius: 12px;
font-size: 20px;
font-weight: bold;
cursor: pointer;
transition: all 0.3s ease;
position: relative;
overflow: hidden;
text-decoration: none !important;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1);
max-width: 800px;
background: linear-gradient(135deg, #FF7B00, #FF5500);
color: white !important;
border: none;
}
/* Dark mode adjustments */
@media (prefers-color-scheme: dark) {
.arena-v2-pointer {
box-shadow: 0 4px 20px rgba(255, 123, 0, 0.3);
}
}
.arena-v2-pointer:hover {
transform: translateY(-5px);
box-shadow: 0 7px 25px rgba(255, 123, 0, 0.4);
filter: brightness(1.05);
color: white !important;
text-decoration: none !important;
}
.arena-v2-pointer::after {
content: "→";
font-size: 24px;
margin-left: 10px;
display: inline-block;
transition: transform 0.3s ease;
}
.arena-v2-pointer:hover::after {
transform: translateX(5px);
}
</style>
<a href="https://huggingface.co/spaces/TTS-AGI/TTS-Arena-V2" class="arena-v2-pointer" target="_blank">
Visit the new TTS Arena V2 to vote on the latest models!
</a>
<div class="leaderboard-container">
<div class="leaderboard-scroll">
<table class="leaderboard-table">
<thead>
<tr>
<th class="col-rank">Rank</th>
<th class="col-model">Model</th>
<th class="col-winrate">Win Rate</th>
<th class="col-votes">Votes</th>
""" + ("""<th class="col-arena">Arena Score</th>""" if sort_by_elo else "") + """
</tr>
</thead>
<tbody>
"""
def get_win_rate_class(win_rate):
if win_rate >= 60:
return "win-rate-excellent"
elif win_rate >= 55:
return "win-rate-good"
elif win_rate >= 45:
return "win-rate-average"
else:
return "win-rate-below"
for _, row in df.iterrows():
win_rate_class = get_win_rate_class(row['win_rate'])
win_rate_html = f'<span class="win-rate {win_rate_class}">{row["win_rate"]}%</span>'
# Add link to model name if available and proprietary badge if closed source
model_name = row['name']
original_model_name = model_name
if model_name in model_links:
model_name = f'<a href="{model_links[model_name]}" target="_blank" class="model-link">{model_name}</a>'
if original_model_name in closed_source:
model_name += '<span class="proprietary-badge">Proprietary</span>'
markdown_table += f'''<tr>
<td class="col-rank">{row['order']}</td>
<td class="col-model">{model_name}</td>
<td class="col-winrate">{win_rate_html}</td>
<td class="col-votes">{row['votes']:,}</td>''' + (
f'''<td class="col-arena">{int(row['elo'])}</td>''' if sort_by_elo else ""
) + "</tr>\n"
markdown_table += "</tbody></table></div></div>"
return markdown_table
ABOUT = """
# TTS Arena (Legacy)
This is the legacy read-only leaderboard for TTS Arena V1. No new votes are being accepted.
**Please visit the new [TTS Arena](https://huggingface.co/spaces/TTS-AGI/TTS-Arena-V2) to vote!**
"""
CITATION_TEXT = """@misc{tts-arena,
title = {Text to Speech Arena},
author = {mrfakename and Srivastav, Vaibhav and Fourrier, Clémentine and Pouget, Lucain and Lacombe, Yoach and main and Gandhi, Sanchit},
year = 2024,
publisher = {Hugging Face},
howpublished = "\\url{https://huggingface.co/spaces/TTS-AGI/TTS-Arena}"
}"""
FOOTER = f"""
If you reference the Arena in your work, please cite it as follows:
```bibtex
{CITATION_TEXT}
```
"""
with gr.Blocks() as demo:
gr.Markdown(ABOUT)
with gr.Row():
with gr.Column():
reveal_prelim = gr.Checkbox(label="Show preliminary results (< 500 votes)", value=False)
hide_battle_votes = gr.Checkbox(label="Exclude battle votes", value=False)
with gr.Column():
sort_by_elo = gr.Checkbox(label="Sort by Arena Score instead of Win Rate", value=True)
hide_proprietary = gr.Checkbox(label="Hide proprietary models", value=False)
leaderboard_html = gr.HTML(get_leaderboard())
# Update leaderboard when filters change
for control in [reveal_prelim, hide_battle_votes, sort_by_elo, hide_proprietary]:
control.change(
fn=get_leaderboard,
inputs=[reveal_prelim, hide_battle_votes, sort_by_elo, hide_proprietary],
outputs=leaderboard_html
)
gr.Markdown(FOOTER)
demo.launch()