Spaces:
Running
Running
File size: 18,880 Bytes
5ee0a10 7ccde22 dd6b309 7ccde22 017ee94 7ccde22 dd6b309 7ccde22 d286a45 7ccde22 017ee94 dd6b309 d286a45 7ccde22 dd6b309 7ccde22 d286a45 7ccde22 d286a45 7ccde22 d286a45 b2bcde5 d286a45 7ccde22 d286a45 dd6b309 d286a45 dd6b309 d286a45 dd6b309 d286a45 dd6b309 d286a45 dd6b309 d286a45 dd6b309 d286a45 dd6b309 d286a45 dd6b309 d286a45 dd6b309 7ccde22 017ee94 a223079 2dec497 dd6b309 a223079 7ccde22 2dec497 dd6b309 2dec497 a223079 2dec497 dd6b309 a223079 dd6b309 a223079 dd6b309 a223079 7ccde22 a223079 7ccde22 a223079 dd6b309 a223079 7ccde22 a223079 dd6b309 a223079 dd6b309 a223079 dd6b309 a223079 dd6b309 a223079 dd6b309 7ccde22 5ee0a10 017ee94 5ee0a10 dd6b309 017ee94 b2bcde5 dd6b309 5ee0a10 017ee94 5ee0a10 dd6b309 5ee0a10 dd6b309 017ee94 5ee0a10 017ee94 dd6b309 017ee94 dd6b309 017ee94 5ee0a10 a223079 dd6b309 a223079 dd6b309 a223079 dd6b309 a223079 dd6b309 a223079 017ee94 a223079 dd6b309 5ee0a10 a223079 dd6b309 a223079 dd6b309 a223079 dd6b309 a223079 dd6b309 a223079 dd6b309 a223079 dd6b309 a223079 dd6b309 a223079 b73a811 dd6b309 b73a811 dd6b309 2dec497 dd6b309 b73a811 2dec497 dd6b309 b73a811 dd6b309 2dec497 dd6b309 2dec497 dd6b309 b73a811 dd6b309 2dec497 dd6b309 d7bc2ed dd6b309 b73a811 dd6b309 b73a811 dd6b309 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
import numpy as np
import pandas as pd
import faiss
import zipfile
import logging
from pathlib import Path
from sentence_transformers import SentenceTransformer, util
import streamlit as st
import time
import os
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler()
]
)
logger = logging.getLogger("MetadataManager")
class MetadataManager:
def __init__(self):
self.cache_dir = Path("unzipped_cache")
self.shard_dir = self.cache_dir / "metadata_shards"
self.shard_map = {}
self.loaded_shards = {}
self.total_docs = 0
logger.info("Initializing MetadataManager")
self._ensure_directories()
self._unzip_if_needed()
self._build_shard_map()
logger.info(f"Total documents indexed: {self.total_docs}")
logger.info(f"Total shards found: {len(self.shard_map)}")
def _ensure_directories(self):
"""Create necessary directories if they don't exist"""
self.cache_dir.mkdir(parents=True, exist_ok=True)
self.shard_dir.mkdir(parents=True, exist_ok=True)
def _unzip_if_needed(self):
"""Handle ZIP extraction with validation and retries"""
zip_path = Path("metadata_shards.zip")
# Check if we need to unzip
if not any(self.shard_dir.glob("*.parquet")):
logger.info("No parquet files found, checking for zip archive")
if not zip_path.exists():
raise FileNotFoundError(f"Metadata ZIP file not found at {zip_path}")
logger.info(f"Extracting {zip_path} to {self.shard_dir}")
try:
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
# Validate zip contents before extraction
zip_files = zip_ref.namelist()
if not any(fname.endswith('.parquet') for fname in zip_files):
raise ValueError("ZIP file contains no parquet files")
zip_ref.extractall(self.shard_dir)
logger.info(f"Extracted {len(zip_files)} files")
# Verify extraction succeeded
if not any(self.shard_dir.glob("*.parquet")):
raise RuntimeError("Extraction completed but no parquet files found")
except Exception as e:
logger.error(f"Failed to extract zip file: {str(e)}")
# Clean up partial extraction
if any(self.shard_dir.iterdir()):
for f in self.shard_dir.glob("*"):
f.unlink()
raise
else:
logger.info("Parquet files already exist in cache directory")
def _build_shard_map(self):
"""Create validated index range to shard mapping"""
logger.info("Building shard map from parquet files")
parquet_files = list(self.shard_dir.glob("*.parquet"))
if not parquet_files:
raise FileNotFoundError("No parquet files found after extraction")
# Sort files by numerical order
parquet_files = sorted(parquet_files, key=lambda x: int(x.stem.split("_")[1]))
# Track expected next index
expected_start = 0
for f in parquet_files:
try:
parts = f.stem.split("_")
if len(parts) != 3:
raise ValueError("Invalid filename format")
start = int(parts[1])
end = int(parts[2])
# Validate continuity
if start != expected_start:
raise ValueError(f"Non-contiguous shard start: expected {expected_start}, got {start}")
# Validate range
if end <= start:
raise ValueError(f"Invalid shard range: {start}-{end}")
self.shard_map[(start, end)] = f.name
self.total_docs = end + 1
expected_start = end + 1
logger.debug(f"Mapped shard {f.name}: indices {start}-{end}")
except Exception as e:
logger.error(f"Error processing shard {f.name}: {str(e)}")
raise RuntimeError("Invalid shard structure") from e
logger.info(f"Validated {len(self.shard_map)} continuous shards")
logger.info(f"Total document count: {self.total_docs}")
# Log shard statistics
logger.info(f"Shard map built with {len(self.shard_map)} shards")
logger.info(f"Total document count: {self.total_docs}")
# Validate shard boundaries for gaps or overlaps
sorted_ranges = sorted(self.shard_map.keys())
for i in range(1, len(sorted_ranges)):
prev_end = sorted_ranges[i-1][1]
curr_start = sorted_ranges[i][0]
if curr_start != prev_end + 1:
logger.warning(f"Gap or overlap detected between shards: {prev_end} to {curr_start}")
def get_metadata(self, global_indices):
"""Retrieve metadata with validation"""
# Check for empty numpy array properly
if isinstance(global_indices, np.ndarray) and global_indices.size == 0:
logger.warning("Empty indices array passed to get_metadata")
return pd.DataFrame(columns=["title", "summary", "source", "similarity"])
# Convert numpy array to list for processing
indices_list = global_indices.tolist() if isinstance(global_indices, np.ndarray) else global_indices
logger.info(f"Retrieving metadata for {len(indices_list)} indices")
# Filter valid indices
valid_indices = [idx for idx in indices_list if 0 <= idx < self.total_docs]
invalid_count = len(indices_list) - len(valid_indices)
if invalid_count > 0:
logger.warning(f"Filtered out {invalid_count} invalid indices")
if not valid_indices:
logger.warning("No valid indices remain after filtering")
return pd.DataFrame(columns=["title", "summary", "source", "similarity"])
# Group indices by shard with boundary check
shard_groups = {}
unassigned_indices = []
for idx in valid_indices:
found = False
for (start, end), shard in self.shard_map.items():
if start <= idx <= end:
if shard not in shard_groups:
shard_groups[shard] = []
shard_groups[shard].append(idx - start)
found = True
break
if not found:
unassigned_indices.append(idx)
logger.warning(f"Index {idx} not found in any shard range")
if unassigned_indices:
logger.warning(f"Could not assign {len(unassigned_indices)} indices to any shard")
# Load and process shards
results = []
for shard, local_indices in shard_groups.items():
try:
logger.info(f"Processing shard {shard} with {len(local_indices)} indices")
start_time = time.time()
if shard not in self.loaded_shards:
logger.info(f"Loading shard file: {shard}")
shard_path = self.shard_dir / shard
# Verify file exists
if not shard_path.exists():
logger.error(f"Shard file not found: {shard_path}")
continue
# Log file size
file_size_mb = os.path.getsize(shard_path) / (1024 * 1024)
logger.info(f"Shard file size: {file_size_mb:.2f} MB")
# Attempt to read the parquet file
try:
self.loaded_shards[shard] = pd.read_parquet(
shard_path,
columns=["title", "summary", "source"]
)
logger.info(f"Successfully loaded shard {shard} with {len(self.loaded_shards[shard])} rows")
except Exception as e:
logger.error(f"Failed to read parquet file {shard}: {str(e)}")
# Try to read file schema for debugging
try:
schema = pd.read_parquet(shard_path, engine='pyarrow').dtypes
logger.info(f"Parquet schema: {schema}")
except:
pass
continue
if local_indices:
# Validate indices are within dataframe bounds
df_len = len(self.loaded_shards[shard])
valid_local_indices = [idx for idx in local_indices if 0 <= idx < df_len]
if len(valid_local_indices) != len(local_indices):
logger.warning(f"Filtered {len(local_indices) - len(valid_local_indices)} out-of-bounds indices")
if valid_local_indices:
logger.debug(f"Retrieving rows at indices: {valid_local_indices}")
chunk = self.loaded_shards[shard].iloc[valid_local_indices]
results.append(chunk)
logger.info(f"Retrieved {len(chunk)} records from shard {shard}")
logger.info(f"Shard processing completed in {time.time() - start_time:.2f} seconds")
except Exception as e:
logger.error(f"Error processing shard {shard}: {str(e)}", exc_info=True)
continue
# Combine results
if results:
combined = pd.concat(results).reset_index(drop=True)
logger.info(f"Combined metadata: {len(combined)} records from {len(results)} shards")
return combined
else:
logger.warning("No metadata records retrieved")
return pd.DataFrame(columns=["title", "summary", "source", "similarity"])
class SemanticSearch:
def __init__(self):
self.shard_dir = Path("compressed_shards")
self.model = None
self.index_shards = []
self.metadata_mgr = MetadataManager()
self.shard_sizes = []
# Configure search logger
self.logger = logging.getLogger("SemanticSearch")
self.logger.info("Initializing SemanticSearch")
@st.cache_resource
def load_model(_self):
return SentenceTransformer('all-MiniLM-L6-v2')
def initialize_system(self):
self.logger.info("Loading sentence transformer model")
start_time = time.time()
self.model = self.load_model()
self.logger.info(f"Model loaded in {time.time() - start_time:.2f} seconds")
self.logger.info("Loading FAISS indices")
self._load_faiss_shards()
def _load_faiss_shards(self):
"""Load all FAISS index shards"""
self.logger.info(f"Searching for index files in {self.shard_dir}")
if not self.shard_dir.exists():
self.logger.error(f"Shard directory not found: {self.shard_dir}")
return
index_files = list(self.shard_dir.glob("*.index"))
self.logger.info(f"Found {len(index_files)} index files")
self.shard_sizes = []
self.index_shards = []
for shard_path in sorted(index_files):
try:
self.logger.info(f"Loading index: {shard_path}")
start_time = time.time()
# Log file size
file_size_mb = os.path.getsize(shard_path) / (1024 * 1024)
self.logger.info(f"Index file size: {file_size_mb:.2f} MB")
index = faiss.read_index(str(shard_path))
self.index_shards.append(index)
self.shard_sizes.append(index.ntotal)
self.logger.info(f"Loaded index with {index.ntotal} vectors in {time.time() - start_time:.2f} seconds")
except Exception as e:
self.logger.error(f"Failed to load index {shard_path}: {str(e)}")
total_vectors = sum(self.shard_sizes)
self.logger.info(f"Total loaded vectors: {total_vectors} across {len(self.index_shards)} shards")
def _global_index(self, shard_idx, local_idx):
"""Convert local index to global index"""
return sum(self.shard_sizes[:shard_idx]) + local_idx
def search(self, query, top_k=5):
"""Search with validation"""
self.logger.info(f"Searching for query: '{query}' (top_k={top_k})")
start_time = time.time()
if not query:
self.logger.warning("Empty query provided")
return pd.DataFrame()
if not self.index_shards:
self.logger.error("No index shards loaded")
return pd.DataFrame()
try:
self.logger.info("Encoding query")
query_embedding = self.model.encode([query], convert_to_numpy=True)
self.logger.debug(f"Query encoded to shape {query_embedding.shape}")
except Exception as e:
self.logger.error(f"Query encoding failed: {str(e)}")
return pd.DataFrame()
all_distances = []
all_global_indices = []
# Search with index validation
self.logger.info(f"Searching across {len(self.index_shards)} shards")
for shard_idx, index in enumerate(self.index_shards):
if index.ntotal == 0:
self.logger.warning(f"Skipping empty shard {shard_idx}")
continue
try:
shard_start = time.time()
distances, indices = index.search(query_embedding, top_k)
valid_mask = (indices[0] >= 0) & (indices[0] < index.ntotal)
valid_indices = indices[0][valid_mask].tolist()
valid_distances = distances[0][valid_mask].tolist()
if len(valid_indices) != top_k:
self.logger.debug(f"Shard {shard_idx}: Found {len(valid_indices)} valid results out of {top_k}")
global_indices = [self._global_index(shard_idx, idx) for idx in valid_indices]
all_distances.extend(valid_distances)
all_global_indices.extend(global_indices)
self.logger.debug(f"Shard {shard_idx} search completed in {time.time() - shard_start:.3f}s")
except Exception as e:
self.logger.error(f"Search failed in shard {shard_idx}: {str(e)}")
continue
self.logger.info(f"Search found {len(all_global_indices)} results across all shards")
# Process results
results = self._process_results(
np.array(all_distances),
np.array(all_global_indices),
top_k
)
self.logger.info(f"Search completed in {time.time() - start_time:.2f} seconds with {len(results)} final results")
return results
def _process_results(self, distances, global_indices, top_k):
"""Process raw search results into formatted DataFrame"""
process_start = time.time()
# Proper numpy array emptiness checks
if global_indices.size == 0 or distances.size == 0:
self.logger.warning("No search results to process")
return pd.DataFrame(columns=["title", "summary", "source", "similarity"])
try:
# Get metadata for matched indices
self.logger.info(f"Retrieving metadata for {len(global_indices)} indices")
metadata_start = time.time()
results = self.metadata_mgr.get_metadata(global_indices)
self.logger.info(f"Metadata retrieved in {time.time() - metadata_start:.2f}s, got {len(results)} records")
# Empty results check
if len(results) == 0:
self.logger.warning("No metadata found for indices")
return pd.DataFrame(columns=["title", "summary", "source", "similarity"])
# Ensure distances match results length
if len(results) != len(distances):
self.logger.warning(f"Mismatch between distances ({len(distances)}) and results ({len(results)})")
if len(results) < len(distances):
self.logger.info("Truncating distances array to match results length")
distances = distances[:len(results)]
else:
# Should not happen but handle it anyway
self.logger.error("More results than distances - this shouldn't happen")
distances = np.pad(distances, (0, len(results) - len(distances)), 'constant', constant_values=1.0)
# Calculate similarity scores
self.logger.debug("Calculating similarity scores")
results['similarity'] = 1 - (distances / 2)
# Log similarity statistics
if not results.empty:
self.logger.debug(f"Similarity stats: min={results['similarity'].min():.3f}, " +
f"max={results['similarity'].max():.3f}, " +
f"mean={results['similarity'].mean():.3f}")
# Deduplicate and sort results
pre_dedup = len(results)
results = results.drop_duplicates(subset=["title", "source"]).sort_values("similarity", ascending=False).head(top_k)
post_dedup = len(results)
if pre_dedup > post_dedup:
self.logger.info(f"Removed {pre_dedup - post_dedup} duplicate results")
self.logger.info(f"Results processed in {time.time() - process_start:.2f}s, returning {len(results)} items")
return results.reset_index(drop=True)
except Exception as e:
self.logger.error(f"Result processing failed: {str(e)}", exc_info=True)
return pd.DataFrame(columns=["title", "summary", "source", "similarity"])
|