pickspace / core.py
ThierryLapouge
qualiclip+ model
a1eba61
# core.py - Enhanced with Text Quality AssessmentR
import pyiqa
import torch
from PIL import Image
import glob
import logging
import numpy as np
import cv2
import easyocr
from typing import Dict, List, Tuple, Optional
import warnings
warnings.filterwarnings("ignore")
class TextQualityAssessor:
"""Specialized text quality assessment using OCR confidence scores"""
def __init__(self):
self.ocr_reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available())
def assess_text_quality(self, image: Image.Image) -> Dict:
"""Assess text quality using OCR confidence and detection metrics"""
try:
# Convert PIL to OpenCV format
cv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# Perform OCR with confidence scores
results = self.ocr_reader.readtext(cv_image, detail=1)
if not results:
return {
'text_detected': False,
'text_quality_score': 100.0, # No text = no text quality issues
'avg_confidence': 1.0,
'text_regions': 0,
'low_quality_regions': 0,
'details': "No text detected"
}
confidences = [result[2] for result in results]
avg_confidence = np.mean(confidences)
# Count low quality text regions (confidence < 0.8)
low_quality_threshold = 0.8
low_quality_regions = sum(1 for conf in confidences if conf < low_quality_threshold)
# Calculate text quality score based on confidence distribution
# Higher penalties for very low confidence text
quality_penalties = []
for conf in confidences:
if conf >= 0.9:
quality_penalties.append(0) # Excellent text
elif conf >= 0.8:
quality_penalties.append(5) # Good text
elif conf >= 0.6:
quality_penalties.append(15) # Readable but poor quality
elif conf >= 0.4:
quality_penalties.append(30) # Heavily distorted
else:
quality_penalties.append(50) # Severely distorted/unreadable
avg_penalty = np.mean(quality_penalties) if quality_penalties else 0
text_quality_score = max(0, 100 - avg_penalty)
# Additional penalty for high proportion of low-quality regions
if len(confidences) > 0:
low_quality_ratio = low_quality_regions / len(confidences)
if low_quality_ratio > 0.5: # More than half regions are poor quality
text_quality_score *= 0.7 # 30% additional penalty
return {
'text_detected': True,
'text_quality_score': text_quality_score,
'avg_confidence': avg_confidence,
'text_regions': len(results),
'low_quality_regions': low_quality_regions,
'details': f"Detected {len(results)} text regions, avg confidence: {avg_confidence:.3f}"
}
except Exception as e:
logging.error(f"Text quality assessment error: {str(e)}")
return {
'text_detected': False,
'text_quality_score': 50.0, # Neutral score on error
'avg_confidence': 0.0,
'text_regions': 0,
'low_quality_regions': 0,
'details': f"Error: {str(e)}"
}
class HybridIQA:
"""Enhanced IQA with text-specific quality assessment"""
def __init__(self, model_name="qualiclip+", text_weight=0.3):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model = pyiqa.create_metric(model_name, device=device)
self.text_assessor = TextQualityAssessor()
self.text_weight = text_weight # Weight for text quality in final score
self.model_name = model_name
logging.basicConfig(level=logging.INFO)
self.logger = logging.getLogger(__name__)
self.logger.info(f"Hybrid IQA loaded: {model_name} + Text Quality Assessment on {device}")
def __call__(self, image, return_details=False):
"""
Evaluate image quality with both traditional IQA and text-specific assessment
Args:
image: PIL Image or path to image
return_details: If True, return detailed breakdown
Returns:
If return_details=False: Combined quality score (0-100)
If return_details=True: Dict with detailed scores and analysis
"""
try:
# Ensure image is PIL Image
if not isinstance(image, Image.Image):
image = Image.open(image).convert("RGB")
else:
image = image.convert("RGB")
# Get traditional IQA score
# Get traditional IQA score
if self.model_name == 'qalign':
# Q-Align has special interface for quality assessment
traditional_score = self.model(image, task_='quality')
else:
traditional_score = self.model(image)
if hasattr(traditional_score, 'item'):
traditional_score = traditional_score.item()
# Normalize traditional score to 0-100 range
if 0 <= traditional_score <= 1:
traditional_score *= 100
# Get text quality assessment
text_analysis = self.text_assessor.assess_text_quality(image)
# Calculate combined score
if text_analysis['text_detected']:
# If text is detected, combine scores
combined_score = (
(1 - self.text_weight) * traditional_score +
self.text_weight * text_analysis['text_quality_score']
)
# Apply additional penalty if text quality is very poor
if text_analysis['text_quality_score'] < 30:
combined_score *= 0.8 # 20% additional penalty for severely poor text
else:
# No text detected, use traditional score only
combined_score = traditional_score
if return_details:
return {
'combined_score': combined_score,
'traditional_score': traditional_score,
'text_analysis': text_analysis,
'model_used': self.model_name,
'text_weight': self.text_weight
}
else:
return combined_score
except Exception as e:
self.logger.error(f"Error processing image: {str(e)}")
return None if not return_details else {'error': str(e)}
# Backward compatibility - maintain original IQA interface
class IQA(HybridIQA):
"""Backward compatible IQA class with enhanced text assessment"""
def __init__(self, model_name="qualiclip+"):
super().__init__(model_name, text_weight=0.3)
def __call__(self, image):
"""Maintain original interface - returns single score"""
return super().__call__(image, return_details=False)
def detailed_analysis(self, image):
"""New method for detailed analysis"""
return super().__call__(image, return_details=True)
# Advanced usage class for power users
class TextAwareIQA:
"""Advanced interface with configurable text assessment parameters"""
def __init__(self, model_name="qualiclip+", text_weight=0.3, text_threshold=0.8):
self.hybrid_iqa = HybridIQA(model_name, text_weight)
self.text_threshold = text_threshold
def evaluate(self, image, text_penalty_mode='balanced'):
"""
Evaluate with different text penalty modes
Args:
image: PIL Image or path
text_penalty_mode: 'strict', 'balanced', or 'lenient'
"""
details = self.hybrid_iqa(image, return_details=True)
if details is None or 'error' in details:
return details
# Adjust text penalties based on mode
if details['text_analysis']['text_detected']:
text_score = details['text_analysis']['text_quality_score']
traditional_score = details['traditional_score']
if text_penalty_mode == 'strict':
# Heavily penalize any text quality issues
weight = 0.5
if text_score < 70:
text_score *= 0.6
elif text_penalty_mode == 'lenient':
# Only penalize severe text issues
weight = 0.1
if text_score > 40:
text_score = min(text_score * 1.2, 100)
else: # balanced
weight = 0.3
combined_score = (1 - weight) * traditional_score + weight * text_score
details['combined_score'] = combined_score
details['penalty_mode'] = text_penalty_mode
return details
if __name__ == "__main__":
# Test both interfaces
print("Testing Hybrid IQA System")
print("=" * 50)
# Original interface (backward compatible)
print("\n1. Original Interface (Backward Compatible):")
iqa_metric = IQA(model_name="qualiclip+")
# Advanced interface
print("\n2. Advanced Interface:")
advanced_iqa = TextAwareIQA(model_name="qualiclip+", text_weight=0.4)
image_files = glob.glob("samples/*")
if not image_files:
print("No images found in samples directory. Please add images or adjust the path.")
else:
for image_file in image_files[:3]: # Test first 3 images
print(f"\nAnalyzing: {image_file}")
# Original score
score = iqa_metric(image_file)
if score is not None:
print(f" Simple Score: {score:.2f}/100")
# Detailed analysis
details = iqa_metric.detailed_analysis(image_file)
if details and 'error' not in details:
print(f" Traditional IQA: {details['traditional_score']:.2f}/100")
print(f" Text Quality: {details['text_analysis']['text_quality_score']:.2f}/100")
print(f" Combined Score: {details['combined_score']:.2f}/100")
print(f" Text Details: {details['text_analysis']['details']}")
if details['text_analysis']['text_detected']:
print(f" Text Regions: {details['text_analysis']['text_regions']}")
print(f" Low Quality Regions: {details['text_analysis']['low_quality_regions']}")
print(f" Avg OCR Confidence: {details['text_analysis']['avg_confidence']:.3f}")
print("-" * 30)