File size: 2,435 Bytes
8f558df
 
21fcfe6
8f558df
 
710ab17
21fcfe6
710ab17
6c90e3e
 
 
 
710ab17
21fcfe6
8f558df
21fcfe6
710ab17
 
 
21fcfe6
 
 
 
 
 
 
 
 
 
 
 
 
8f558df
21fcfe6
6c90e3e
710ab17
 
b959c42
710ab17
 
8f558df
710ab17
 
 
 
 
8f558df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21fcfe6
8f558df
 
 
 
21fcfe6
 
8f558df
b959c42
710ab17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import gradio as gr
from transformers import AutoModelForCausalLM, AutoProcessor
import torch
from PIL import Image

# Model ve işlemci yükleme
models = {
    "microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained(
        "microsoft/Phi-3.5-vision-instruct", 
        trust_remote_code=True, 
        torch_dtype=torch.float32,  # CPU üzerinde çalıştığı için float32 kullanılıyor
        device_map=None  # GPU kullanımını devre dışı bırakır
    ).eval()
}

processors = {
    "microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained(
        "microsoft/Phi-3.5-vision-instruct", trust_remote_code=True
    )
}

DESCRIPTION = "[Phi-3.5-vision Demo](https://huggingface.co/microsoft/Phi-3.5-vision-instruct)"

user_prompt = '<|user|>\n'
assistant_prompt = '<|assistant|>\n'
prompt_suffix = "<|end|>\n"

def run_example(image, text_input=None, model_id="microsoft/Phi-3.5-vision-instruct"):
    model = models[model_id]
    processor = processors[model_id]

    prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
    image = Image.fromarray(image).convert("RGB")

    inputs = processor(prompt, image, return_tensors="pt")  # Varsayılan olarak CPU kullanılır
    generate_ids = model.generate(
        **inputs,
        max_new_tokens=2048,
        eos_token_id=processor.tokenizer.eos_token_id,
    )
    generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
    response = processor.batch_decode(
        generate_ids,
        skip_special_tokens=True,
        clean_up_tokenization_spaces=False
    )[0]
    return response

css = """
  #output {
    height: 500px; 
    overflow: auto; 
    border: 1px solid #ccc; 
  }
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Tab(label="Phi-3.5 Input"):
        with gr.Row():
            with gr.Column():
                input_img = gr.Image(label="Input Picture")
                model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="microsoft/Phi-3.5-vision-instruct")
                text_input = gr.Textbox(label="Question")
                submit_btn = gr.Button(value="Submit")
            with gr.Column():
                output_text = gr.Textbox(label="Output Text")

        submit_btn.click(run_example, [input_img, text_input, model_selector], [output_text])

demo.queue(api_open=True)
demo.launch(debug=True, show_api=False)