Spaces:
Runtime error
Runtime error
File size: 2,435 Bytes
8f558df 21fcfe6 8f558df 710ab17 21fcfe6 710ab17 6c90e3e 710ab17 21fcfe6 8f558df 21fcfe6 710ab17 21fcfe6 8f558df 21fcfe6 6c90e3e 710ab17 b959c42 710ab17 8f558df 710ab17 8f558df 21fcfe6 8f558df 21fcfe6 8f558df b959c42 710ab17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoProcessor
import torch
from PIL import Image
# Model ve işlemci yükleme
models = {
"microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained(
"microsoft/Phi-3.5-vision-instruct",
trust_remote_code=True,
torch_dtype=torch.float32, # CPU üzerinde çalıştığı için float32 kullanılıyor
device_map=None # GPU kullanımını devre dışı bırakır
).eval()
}
processors = {
"microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained(
"microsoft/Phi-3.5-vision-instruct", trust_remote_code=True
)
}
DESCRIPTION = "[Phi-3.5-vision Demo](https://huggingface.co/microsoft/Phi-3.5-vision-instruct)"
user_prompt = '<|user|>\n'
assistant_prompt = '<|assistant|>\n'
prompt_suffix = "<|end|>\n"
def run_example(image, text_input=None, model_id="microsoft/Phi-3.5-vision-instruct"):
model = models[model_id]
processor = processors[model_id]
prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
image = Image.fromarray(image).convert("RGB")
inputs = processor(prompt, image, return_tensors="pt") # Varsayılan olarak CPU kullanılır
generate_ids = model.generate(
**inputs,
max_new_tokens=2048,
eos_token_id=processor.tokenizer.eos_token_id,
)
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
response = processor.batch_decode(
generate_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)[0]
return response
css = """
#output {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(DESCRIPTION)
with gr.Tab(label="Phi-3.5 Input"):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Picture")
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="microsoft/Phi-3.5-vision-instruct")
text_input = gr.Textbox(label="Question")
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_text = gr.Textbox(label="Output Text")
submit_btn.click(run_example, [input_img, text_input, model_selector], [output_text])
demo.queue(api_open=True)
demo.launch(debug=True, show_api=False)
|