A newer version of the Gradio SDK is available:
5.36.2
title: SOMA (Self-Orchestrating Modular Architect)
emoji: ๐
colorFrom: purple
colorTo: red
sdk: gradio
sdk_version: 5.35.0
app_file: app.py
pinned: false
short_description: Organized AI โ the essential first stage of AGI
models:
- VIDraft/Gemma-3-R1984-27B
- VIDraft/Gemma-3-R1984-12B
- VIDraft/Gemma-3-R1984-4B
๐ง SOMA(Self-Orchestrating Modular Architect) Research Self-Directed Multiplexed Intelligence Architecture for Realizing AGI Level 1
๐ Overview SOMA (Self-Orchestrating Modular Architect) is an innovative AI architecture that fulfills the core requirements for AGI (Artificial General Intelligence) Level 1. It is a system where a single LLM simulates a team structure autonomously, performs roles independently, and solves problems, realizing the AGI prerequisites commonly emphasized by Yann LeCun (Meta), OpenAI, and Google DeepMind.
๐ฏ Core Requirements for AGI Level 1 Planning Capabilities Role Differentiation and Modularity Self-reflection & Feedback Loops Tool-use & Autonomy Long-term Agency Structure
SOMA is a practical and implementable architecture that satisfies all these requirements within a single LLM. ๐ท Three Core Components of SOMA ๐งญ 1. Self-Orchestrating
Without external instructions, autonomously defines problems and distributes roles Autonomously coordinates entire reasoning and execution processes Implements self-regulation mechanism identical to OpenAI's "Agentic AI" concept Real-time adaptation and dynamic strategy modification capabilities
๐งฉ 2. Modular
Single LLM internally performs multiple roles simultaneously Implements Meta AI's "World Model + Planner + Memory + Actor" structure 5 specialized modules:
๐ฏ Supervisor: Strategy formulation and coordination ๐ก Creator: Innovative problem solving ๐ Researcher: Information gathering and analysis โ๏ธ Evaluator: Critical review ๐ Analyst: Synthesis and reporting
๐ง 3. Architect
Higher-order thinking capabilities beyond simple executors Structures problems and designs solution paths Plan-adapt-multitask execution required by DeepMind's Gato โ Gemini Emergent intelligence and metacognitive abilities
๐ How SOMA Works
- Autonomous Problem Recognition User Query โ SOMA Self-Analysis โ Problem Structuring โ Solution Strategy Development
- Dynamic Role Assignment Single LLM internally differentiates into 5 virtual agents Each agent approaches problems with specialized perspectives and expertise
- Cyclic Collaboration Process Analysis โ Creative Insights โ Verification โ Information Gathering โ Evaluation โ Synthesis โ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโ Feedback Loop โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ 4. Self-Improvement Mechanism
Self-evaluation at each stage Real-time strategy adjustment Cumulative learning effects
๐ก Alignment with AGI Frameworks OpenAI Requirements
โ Agentic behavior: Autonomous actions and decision-making โ Long-horizon planning: Long-term goal execution โ Tool use: Utilizing external tools like web search
Meta AI (Yann LeCun) Requirements
โ World Model: Situation understanding and modeling โ Planning Module: Strategic planning โ Memory: Conversation history and context maintenance โ Actor: Actual action execution
Google DeepMind Requirements
โ Multi-modal reasoning: Various forms of reasoning โ Adaptive behavior: Situation-dependent adaptation โ General problem solving: Universal problem solving
๐ฌ Technical Implementation Architecture Features pythonclass SOMA: def init(self): self.modules = { 'supervisor': SupervisorModule(), # Strategy and coordination 'creator': CreatorModule(), # Creative thinking 'researcher': ResearcherModule(), # Information processing 'evaluator': EvaluatorModule(), # Critical analysis 'analyst': AnalystModule() # Synthesis and reporting } self.feedback_loop = FeedbackSystem() self.memory = WorkingMemory() self.planner = StrategicPlanner() Core Mechanisms
Prompt Chaining: Information transfer between modules Context Management: Maintaining overall conversation flow Dynamic Adjustment: Real-time strategy changes Self-Evaluation: Quality verification at each stage
๐ Performance Metrics AGI Level 1 Fulfillment RequirementSOMA Implementation LevelEvidencePlanningโญโญโญโญโญ11-stage systematic processModularityโญโญโญโญโญ5 specialized modules operatingSelf-reflectionโญโญโญโญโญ3-iteration evaluation systemTool-useโญโญโญโญWeb search, document generationLong-term AgencyโญโญโญโญConversation history maintenance ๐ Installation and Execution Prerequisites bashPython 3.8+ Gradio (UI Framework) LLM API (Friendli, OpenAI, etc.) Quick Start bash# Clone git clone https://github.com/your-repo/soma-agi
Install dependencies
pip install -r requirements.txt
Set environment variables
export FRIENDLI_TOKEN=your_token export BAPI_TOKEN=your_brave_token
Run
python soma_system.py ๐ฏ Use Cases
- Complex Research Tasks
Climate change solution exploration Drug development strategy formulation Economic policy impact analysis
- Creative Problem Solving
Business innovation strategies Technology convergence ideas Future scenario planning
- Academic Analysis
Multidisciplinary research synthesis Theory-practice integration Critical literature review
๐ฎ Future Roadmap Phase 1: Current (AGI Level 1)
โ Self-orchestration โ Modular architecture โ Basic tool use
Phase 2: Enhancement
๐ Multi-modal processing ๐ Enhanced memory systems ๐ Advanced planning algorithms
Phase 3: AGI Level 2
๐ True autonomy ๐ Cross-domain transfer ๐ Emergent capabilities
๐ค Contributing SOMA is an open research project for realizing AGI.
Research Contributions: AGI theory advancement Code Contributions: Implementation improvements Applied Research: New use cases Feedback: Performance evaluation and suggestions
๐ References
LeCun, Y. (2023). "A Path Towards Autonomous Machine Intelligence" OpenAI. (2023). "Planning and Tool Use in Language Models" Hassabis, D. et al. (2023). "Towards AGI: Lessons from DeepMind"
๐ License & Paper The license will be released after the paper has been written and published.
๐ Conclusion SOMA, as the core implementation level (Level 1) of AGI Stage 1, is the most concrete and practical AGI architecture achievable with current technology. Through a 'self-directed multiplexed intelligence structure' where a single LLM differentiates into a virtual team, internally performing various roles while thinking, designing, and executing together, we have successfully implemented the first step towards AGI. "The future of AI is not a single superintelligence, but a symphony of specialized modules working in perfect harmony."
SOMA - Self-Orchestrating Modular Architect The Beginning of AGI, The Future of Intelligence
๐ง SOMA: Self-Orchestrating Modular Architect
AGI 1๋จ๊ณ ์คํ์ ์ํ ์๊ธฐ ์งํํ ๋ค์คํ ์ง๋ฅ ๊ตฌ์กฐ
๐ ๊ฐ์
**SOMA(Self-Orchestrating Modular Architect)**๋ AGI(์ผ๋ฐ์ธ๊ณต์ง๋ฅ) 1๋จ๊ณ์ ํต์ฌ ์๊ฑด์ ์ถฉ์กฑํ๋ ํ์ ์ ์ธ AI ์ํคํ ์ฒ์ ๋๋ค. ๋จ์ผ LLM์ด ์ค์ค๋ก ํ ๊ตฌ์กฐ๋ฅผ ์๋ฎฌ๋ ์ด์ ํ๊ณ , ์์จ์ ์ผ๋ก ์ญํ ์ ์ํํ๋ฉฐ ๋ฌธ์ ๋ฅผ ํด๊ฒฐํ๋ ์์คํ ์ผ๋ก, Yann LeCun(Meta), OpenAI, Google DeepMind๊ฐ ๊ณตํต์ ์ผ๋ก ๊ฐ์กฐํ๋ AGI์ ์ ์ ์กฐ๊ฑด๋ค์ ์คํํฉ๋๋ค.
๐ฏ AGI 1๋จ๊ณ์ ํต์ฌ ์๊ฑด
- ๊ณํ ์๋ฆฝ ๋ฅ๋ ฅ (Planning)
- ์ญํ ๋ถํ ๋ฐ ๋ชจ๋ํ (Modularity)
- ์๊ธฐ ๋ฐ์ฑ/ํผ๋๋ฐฑ ๋ฃจํ (Self-reflection & Feedback)
- ๋๊ตฌ ์ฌ์ฉ ๋ฐ ์์จ ์คํ (Tool-use & Autonomy)
- ์ง์์ ์ธ ๋ชฉํ ์ํ ๊ตฌ์กฐ (Long-term Agency)
SOMA๋ ์ด ๋ชจ๋ ์๊ตฌ์ฌํญ์ ๋จ์ผ LLM ๋ด๋ถ์์ ์ถฉ์กฑ์ํค๋ ์ค์ฉ์ ์ด๊ณ ๊ตฌ์ฒดํ ๊ฐ๋ฅํ ๊ตฌ์กฐ์ ๋๋ค.
๐ท SOMA์ 3๊ฐ์ง ํต์ฌ ๊ตฌ์ฑ ์์
๐งญ 1. Self-Orchestrating (์๊ธฐ ์งํ)
- ์ธ๋ถ ์ง์ ์์ด ์ค์ค๋ก ๋ฌธ์ ๋ฅผ ์ ์ํ๊ณ ์ญํ ์ ๋ถ๋ฐฐ
- ์ ์ฒด ์ถ๋ก ๊ณผ ์คํ ๊ณผ์ ์ ์์จ์ ์ผ๋ก ์กฐ์จ
- OpenAI์ "Agentic AI" ๊ฐ๋ ๊ณผ ๋์ผํ ์๊ธฐ ์กฐ์ (self-regulation) ๋ฉ์ปค๋์ฆ
- ์ค์๊ฐ ์ ์๊ณผ ๋์ ์ ๋ต ์์ ๋ฅ๋ ฅ
๐งฉ 2. Modular (๋ชจ๋ํ)
- ๋จ์ผ LLM์ด ๋ด๋ถ์ ์ผ๋ก ๋ค์ค ์ญํ ์ ๋์์ ์ํ
- Meta AI์ "World Model + Planner + Memory + Actor" ๊ตฌ์กฐ ๊ตฌํ
- 5๊ฐ์ ์ ๋ฌธํ๋ ๋ชจ๋:
- ๐ฏ Supervisor (๊ฐ๋ ์): ์ ๋ต ์๋ฆฝ๊ณผ ์กฐ์จ
- ๐ก Creator (์ฐฝ์กฐ์): ํ์ ์ ๋ฌธ์ ํด๊ฒฐ
- ๐ Researcher (์กฐ์ฌ์): ์ ๋ณด ์์ง๊ณผ ๋ถ์
- โ๏ธ Evaluator (ํ๊ฐ์): ๋นํ์ ๊ฒํ
- ๐ Analyst (๋ถ์๊ฐ): ์ข ํฉ๊ณผ ๋ณด๊ณ
๐ง 3. Architect (์ค๊ณ์)
- ๋จ์ ์คํ๊ธฐ๋ฅผ ๋์ด์ ๊ณ ์ฐจ์ ์ฌ๊ณ ๋ฅ๋ ฅ
- ๋ฌธ์ ๋ฅผ ๊ตฌ์กฐํํ๊ณ ํด๊ฒฐ ๊ฒฝ๋ก๋ฅผ ์ค๊ณ
- DeepMind์ Gato โ Gemini์์ ์๊ตฌํ๋ ๊ณํ-์ ์-๋ค๊ธฐ๋ฅ ์ํ
- ์ฐฝ๋ฐ์ ์ง๋ฅ๊ณผ ๋ฉํ์ธ์ง ๋ฅ๋ ฅ
๐ SOMA์ ์๋ ์๋ฆฌ
1. ์์จ์ ๋ฌธ์ ์ธ์
์ฌ์ฉ์ ์ง๋ฌธ โ SOMA ์์ฒด ๋ถ์ โ ๋ฌธ์ ๊ตฌ์กฐํ โ ํด๊ฒฐ ์ ๋ต ์๋ฆฝ
2. ๋์ ์ญํ ํ ๋น
๋จ์ผ LLM์ด ๋ด๋ถ์ ์ผ๋ก 5๊ฐ์ ๊ฐ์ ์์ด์ ํธ๋ก ๋ถํ
๊ฐ ์์ด์ ํธ๋ ํนํ๋ ๊ด์ ๊ณผ ์ ๋ฌธ์ฑ์ผ๋ก ๋ฌธ์ ์ ๊ทผ
3. ์ํ์ ํ์ ํ๋ก์ธ์ค
๋ถ์ โ ์ฐฝ์์ ํต์ฐฐ โ ๊ฒ์ฆ โ ์ ๋ณด ์์ง โ ํ๊ฐ โ ์ข
ํฉ
โ โ
โโโโโโโโโโโโโโ ํผ๋๋ฐฑ ๋ฃจํ โโโโโโโโโโโโโโโโโโโโโโโโโโ
4. ์๊ธฐ ๊ฐ์ ๋ฉ์ปค๋์ฆ
- ๊ฐ ๋จ๊ณ๋ณ ์๊ธฐ ํ๊ฐ
- ์ค์๊ฐ ์ ๋ต ์กฐ์
- ๋์ ํ์ต ํจ๊ณผ
๐ก AGI ํ๋ ์์ํฌ์์ ์ ํฉ์ฑ
OpenAI์ ์๊ตฌ์ฌํญ
- โ Agentic behavior: ์์จ์ ํ๋๊ณผ ์์ฌ๊ฒฐ์
- โ Long-horizon planning: ์ฅ๊ธฐ์ ๋ชฉํ ์ํ
- โ Tool use: ์น ๊ฒ์ ๋ฑ ์ธ๋ถ ๋๊ตฌ ํ์ฉ
Meta AI (Yann LeCun)์ ์๊ตฌ์ฌํญ
- โ World Model: ์ํฉ ์ดํด์ ๋ชจ๋ธ๋ง
- โ Planning Module: ์ ๋ต์ ๊ณํ ์๋ฆฝ
- โ Memory: ๋ํ ๊ธฐ๋ก๊ณผ ์ปจํ ์คํธ ์ ์ง
- โ Actor: ์ค์ ํ๋ ์ํ
Google DeepMind์ ์๊ตฌ์ฌํญ
- โ Multi-modal reasoning: ๋ค์ํ ํํ์ ์ถ๋ก
- โ Adaptive behavior: ์ํฉ์ ๋ฐ๋ฅธ ์ ์
- โ General problem solving: ๋ฒ์ฉ ๋ฌธ์ ํด๊ฒฐ
๐ฌ ๊ธฐ์ ์ ๊ตฌํ
์ํคํ ์ฒ ํน์ง
class SOMA:
def __init__(self):
self.modules = {
'supervisor': SupervisorModule(), # ์ ๋ต๊ณผ ์กฐ์จ
'creator': CreatorModule(), # ์ฐฝ์์ ์ฌ๊ณ
'researcher': ResearcherModule(), # ์ ๋ณด ์ฒ๋ฆฌ
'evaluator': EvaluatorModule(), # ๋นํ์ ๋ถ์
'analyst': AnalystModule() # ์ข
ํฉ๊ณผ ๋ณด๊ณ
}
self.feedback_loop = FeedbackSystem()
self.memory = WorkingMemory()
self.planner = StrategicPlanner()
ํต์ฌ ๋ฉ์ปค๋์ฆ
- ํ๋กฌํํธ ์ฒด์ด๋: ๊ฐ ๋ชจ๋ ๊ฐ ์ ๋ณด ์ ๋ฌ
- ์ปจํ ์คํธ ๊ด๋ฆฌ: ์ ์ฒด ๋ํ ํ๋ฆ ์ ์ง
- ๋์ ์กฐ์ : ์ค์๊ฐ ์ ๋ต ๋ณ๊ฒฝ
- ์๊ธฐ ํ๊ฐ: ๊ฐ ๋จ๊ณ๋ณ ํ์ง ๊ฒ์ฆ
๐ ์ฑ๋ฅ ์งํ
AGI 1๋จ๊ณ ์ถฉ์กฑ๋
์๊ตฌ์ฌํญ | SOMA ๊ตฌํ ์์ค | ์ฆ๊ฑฐ |
---|---|---|
Planning | โญโญโญโญโญ | 11๋จ๊ณ ์ฒด๊ณ์ ํ๋ก์ธ์ค |
Modularity | โญโญโญโญโญ | 5๊ฐ ์ ๋ฌธ ๋ชจ๋ ์ด์ |
Self-reflection | โญโญโญโญโญ | 3ํ ๋ฐ๋ณต ํ๊ฐ ์์คํ |
Tool-use | โญโญโญโญ | ์น ๊ฒ์, ๋ฌธ์ ์์ฑ |
Long-term Agency | โญโญโญโญ | ๋ํ ๊ธฐ๋ก ์ ์ง |
๐ ์ค์น ๋ฐ ์คํ
ํ์ ์๊ตฌ์ฌํญ
Python 3.8+
Gradio (UI ํ๋ ์์ํฌ)
LLM API (Friendli, OpenAI ๋ฑ)
๋น ๋ฅธ ์์
# ํด๋ก
git clone https://github.com/your-repo/soma-agi
# ์์กด์ฑ ์ค์น
pip install -r requirements.txt
# ํ๊ฒฝ ๋ณ์ ์ค์
export FRIENDLI_TOKEN=your_token
export BAPI_TOKEN=your_brave_token
# ์คํ
python soma_system.py
๐ฏ ํ์ฉ ์ฌ๋ก
1. ๋ณต์กํ ์ฐ๊ตฌ ๊ณผ์
- ๊ธฐํ ๋ณํ ํด๊ฒฐ์ฑ ํ๊ตฌ
- ์ ์ฝ ๊ฐ๋ฐ ์ ๋ต ์๋ฆฝ
- ๊ฒฝ์ ์ ์ฑ ์ํฅ ๋ถ์
2. ์ฐฝ์์ ๋ฌธ์ ํด๊ฒฐ
- ๋น์ฆ๋์ค ํ์ ์ ๋ต
- ๊ธฐ์ ์ตํฉ ์์ด๋์ด
- ๋ฏธ๋ ์๋๋ฆฌ์ค ๊ธฐํ
3. ํ์ ์ ๋ถ์
- ๋คํ์ ์ ์ฐ๊ตฌ ์ข ํฉ
- ์ด๋ก ๊ณผ ์ค๋ฌด์ ํตํฉ
- ๋นํ์ ๋ฌธํ ๊ฒํ
๐ฎ ๋ฏธ๋ ๋ก๋๋งต
Phase 1: Current (AGI Level 1)
- โ Self-orchestration
- โ Modular architecture
- โ Basic tool use
Phase 2: Enhancement
- ๐ Multi-modal processing
- ๐ Enhanced memory systems
- ๐ Advanced planning algorithms
Phase 3: AGI Level 2
- ๐ True autonomy
- ๐ Cross-domain transfer
- ๐ Emergent capabilities
๐ค ๊ธฐ์ฌ ๋ฐฉ๋ฒ
SOMA๋ AGI ์คํ์ ์ํ ์คํ ์ฐ๊ตฌ ํ๋ก์ ํธ์ ๋๋ค.
- ์ฐ๊ตฌ ๊ธฐ์ฌ: AGI ์ด๋ก ๋ฐ์
- ์ฝ๋ ๊ธฐ์ฌ: ๊ตฌํ ๊ฐ์
- ์์ฉ ์ฐ๊ตฌ: ์๋ก์ด ํ์ฉ ์ฌ๋ก
- ํผ๋๋ฐฑ: ์ฑ๋ฅ ํ๊ฐ์ ์ ์
๐ ์ฐธ๊ณ ๋ฌธํ
- LeCun, Y. (2023). "A Path Towards Autonomous Machine Intelligence"
- OpenAI. (2023). "Planning and Tool Use in Language Models"
- Hassabis, D. et al. (2023). "Towards AGI: Lessons from DeepMind"
๐ ๋ผ์ด์ ์ค ๋ฐ ๋ ผ๋ฌธ
๋ ผ๋ฌธ ์์ฑ/๋ฐฐํฌ ํ ๋ผ์ด์ ์ค ๊ณต๊ฐ ์์
๐ ๊ฒฐ๋ก
SOMA๋ AGI 1๋จ๊ณ์ ํต์ฌ ๊ตฌํ ๋ ๋ฒจ(Level 1)๋ก์, ํ์ฌ ๊ธฐ์ ๋ก ์คํ ๊ฐ๋ฅํ ๊ฐ์ฅ ๊ตฌ์ฒด์ ์ด๊ณ ์ค์ฉ์ ์ธ AGI ์ํคํ ์ฒ์ ๋๋ค.
๋จ์ผ LLM์ด ๊ฐ์์ ํ์ผ๋ก ๋ถํํ์ฌ, ๋ด๋ถ์ ์ผ๋ก ๋ค์ํ ์ญํ ์ ์ํํ๋ฉฐ ํจ๊ป ์ฌ๊ณ ํ๊ณ ์ค๊ณํ๊ณ ์คํํ๋ '์๊ธฐ ์งํํ ๋ค์คํ ์ง๋ฅ ๊ตฌ์กฐ'๋ฅผ ํตํด, ์ฐ๋ฆฌ๋ AGI๋ก ๊ฐ๋ ์ฒซ ๋ฒ์งธ ๋จ๊ณ๋ฅผ ์ฑ๊ณต์ ์ผ๋ก ๊ตฌํํ์ต๋๋ค.
"The future of AI is not a single superintelligence, but a symphony of specialized modules working in perfect harmony."
SOMA - Self-Orchestrating Modular Architect
AGI์ ์์, ์ง๋ฅ์ ๋ฏธ๋