|
--- |
|
title: SOMA (Self-Orchestrating Modular Architect) |
|
emoji: ๐ |
|
colorFrom: purple |
|
colorTo: red |
|
sdk: gradio |
|
sdk_version: 5.35.0 |
|
app_file: app.py |
|
pinned: false |
|
short_description: Organized AI โ the essential first stage of AGI |
|
models: |
|
- VIDraft/Gemma-3-R1984-27B |
|
- VIDraft/Gemma-3-R1984-12B |
|
- VIDraft/Gemma-3-R1984-4B |
|
--- |
|
|
|
๐ง SOMA(Self-Orchestrating Modular Architect) Research |
|
Self-Directed Multiplexed Intelligence Architecture for Realizing AGI Level 1 |
|
|
|
๐ Overview |
|
SOMA (Self-Orchestrating Modular Architect) is an innovative AI architecture that fulfills the core requirements for AGI (Artificial General Intelligence) Level 1. It is a system where a single LLM simulates a team structure autonomously, performs roles independently, and solves problems, realizing the AGI prerequisites commonly emphasized by Yann LeCun (Meta), OpenAI, and Google DeepMind. |
|
|
|
๐ฏ Core Requirements for AGI Level 1 |
|
Planning Capabilities |
|
Role Differentiation and Modularity |
|
Self-reflection & Feedback Loops |
|
Tool-use & Autonomy |
|
Long-term Agency Structure |
|
|
|
SOMA is a practical and implementable architecture that satisfies all these requirements within a single LLM. |
|
๐ท Three Core Components of SOMA |
|
๐งญ 1. Self-Orchestrating |
|
|
|
Without external instructions, autonomously defines problems and distributes roles |
|
Autonomously coordinates entire reasoning and execution processes |
|
Implements self-regulation mechanism identical to OpenAI's "Agentic AI" concept |
|
Real-time adaptation and dynamic strategy modification capabilities |
|
|
|
๐งฉ 2. Modular |
|
|
|
Single LLM internally performs multiple roles simultaneously |
|
Implements Meta AI's "World Model + Planner + Memory + Actor" structure |
|
5 specialized modules: |
|
|
|
๐ฏ Supervisor: Strategy formulation and coordination |
|
๐ก Creator: Innovative problem solving |
|
๐ Researcher: Information gathering and analysis |
|
โ๏ธ Evaluator: Critical review |
|
๐ Analyst: Synthesis and reporting |
|
|
|
|
|
|
|
๐ง 3. Architect |
|
|
|
Higher-order thinking capabilities beyond simple executors |
|
Structures problems and designs solution paths |
|
Plan-adapt-multitask execution required by DeepMind's Gato โ Gemini |
|
Emergent intelligence and metacognitive abilities |
|
|
|
๐ How SOMA Works |
|
1. Autonomous Problem Recognition |
|
User Query โ SOMA Self-Analysis โ Problem Structuring โ Solution Strategy Development |
|
2. Dynamic Role Assignment |
|
Single LLM internally differentiates into 5 virtual agents |
|
Each agent approaches problems with specialized perspectives and expertise |
|
3. Cyclic Collaboration Process |
|
Analysis โ Creative Insights โ Verification โ Information Gathering โ Evaluation โ Synthesis |
|
โ โ |
|
โโโโโโโโโโโโโโโโโโโโโโโโโโโโ Feedback Loop โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ |
|
4. Self-Improvement Mechanism |
|
|
|
Self-evaluation at each stage |
|
Real-time strategy adjustment |
|
Cumulative learning effects |
|
|
|
๐ก Alignment with AGI Frameworks |
|
OpenAI Requirements |
|
|
|
โ
Agentic behavior: Autonomous actions and decision-making |
|
โ
Long-horizon planning: Long-term goal execution |
|
โ
Tool use: Utilizing external tools like web search |
|
|
|
Meta AI (Yann LeCun) Requirements |
|
|
|
โ
World Model: Situation understanding and modeling |
|
โ
Planning Module: Strategic planning |
|
โ
Memory: Conversation history and context maintenance |
|
โ
Actor: Actual action execution |
|
|
|
Google DeepMind Requirements |
|
|
|
โ
Multi-modal reasoning: Various forms of reasoning |
|
โ
Adaptive behavior: Situation-dependent adaptation |
|
โ
General problem solving: Universal problem solving |
|
|
|
๐ฌ Technical Implementation |
|
Architecture Features |
|
pythonclass SOMA: |
|
def __init__(self): |
|
self.modules = { |
|
'supervisor': SupervisorModule(), # Strategy and coordination |
|
'creator': CreatorModule(), # Creative thinking |
|
'researcher': ResearcherModule(), # Information processing |
|
'evaluator': EvaluatorModule(), # Critical analysis |
|
'analyst': AnalystModule() # Synthesis and reporting |
|
} |
|
self.feedback_loop = FeedbackSystem() |
|
self.memory = WorkingMemory() |
|
self.planner = StrategicPlanner() |
|
Core Mechanisms |
|
|
|
Prompt Chaining: Information transfer between modules |
|
Context Management: Maintaining overall conversation flow |
|
Dynamic Adjustment: Real-time strategy changes |
|
Self-Evaluation: Quality verification at each stage |
|
|
|
๐ Performance Metrics |
|
AGI Level 1 Fulfillment |
|
RequirementSOMA Implementation LevelEvidencePlanningโญโญโญโญโญ11-stage systematic processModularityโญโญโญโญโญ5 specialized modules operatingSelf-reflectionโญโญโญโญโญ3-iteration evaluation systemTool-useโญโญโญโญWeb search, document generationLong-term AgencyโญโญโญโญConversation history maintenance |
|
๐ Installation and Execution |
|
Prerequisites |
|
bashPython 3.8+ |
|
Gradio (UI Framework) |
|
LLM API (Friendli, OpenAI, etc.) |
|
Quick Start |
|
bash# Clone |
|
git clone https://github.com/your-repo/soma-agi |
|
|
|
# Install dependencies |
|
pip install -r requirements.txt |
|
|
|
# Set environment variables |
|
export FRIENDLI_TOKEN=your_token |
|
export BAPI_TOKEN=your_brave_token |
|
|
|
# Run |
|
python soma_system.py |
|
๐ฏ Use Cases |
|
1. Complex Research Tasks |
|
|
|
Climate change solution exploration |
|
Drug development strategy formulation |
|
Economic policy impact analysis |
|
|
|
2. Creative Problem Solving |
|
|
|
Business innovation strategies |
|
Technology convergence ideas |
|
Future scenario planning |
|
|
|
3. Academic Analysis |
|
|
|
Multidisciplinary research synthesis |
|
Theory-practice integration |
|
Critical literature review |
|
|
|
๐ฎ Future Roadmap |
|
Phase 1: Current (AGI Level 1) |
|
|
|
โ
Self-orchestration |
|
โ
Modular architecture |
|
โ
Basic tool use |
|
|
|
Phase 2: Enhancement |
|
|
|
๐ Multi-modal processing |
|
๐ Enhanced memory systems |
|
๐ Advanced planning algorithms |
|
|
|
Phase 3: AGI Level 2 |
|
|
|
๐
True autonomy |
|
๐
Cross-domain transfer |
|
๐
Emergent capabilities |
|
|
|
๐ค Contributing |
|
SOMA is an open research project for realizing AGI. |
|
|
|
Research Contributions: AGI theory advancement |
|
Code Contributions: Implementation improvements |
|
Applied Research: New use cases |
|
Feedback: Performance evaluation and suggestions |
|
|
|
๐ References |
|
|
|
LeCun, Y. (2023). "A Path Towards Autonomous Machine Intelligence" |
|
OpenAI. (2023). "Planning and Tool Use in Language Models" |
|
Hassabis, D. et al. (2023). "Towards AGI: Lessons from DeepMind" |
|
|
|
๐ License & Paper |
|
The license will be released after the paper has been written and published. |
|
|
|
|
|
๐ Conclusion |
|
SOMA, as the core implementation level (Level 1) of AGI Stage 1, is the most concrete and practical AGI architecture achievable with current technology. |
|
Through a 'self-directed multiplexed intelligence structure' where a single LLM differentiates into a virtual team, internally performing various roles while thinking, designing, and executing together, we have successfully implemented the first step towards AGI. |
|
"The future of AI is not a single superintelligence, but a symphony of specialized modules working in perfect harmony." |
|
|
|
SOMA - Self-Orchestrating Modular Architect |
|
The Beginning of AGI, The Future of Intelligence |
|
|
|
--------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
|
# ๐ง SOMA: Self-Orchestrating Modular Architect |
|
### AGI 1๋จ๊ณ ์คํ์ ์ํ ์๊ธฐ ์งํํ ๋ค์คํ ์ง๋ฅ ๊ตฌ์กฐ |
|
|
|
## ๐ ๊ฐ์ |
|
**SOMA(Self-Orchestrating Modular Architect)**๋ AGI(์ผ๋ฐ์ธ๊ณต์ง๋ฅ) 1๋จ๊ณ์ ํต์ฌ ์๊ฑด์ ์ถฉ์กฑํ๋ ํ์ ์ ์ธ AI ์ํคํ
์ฒ์
๋๋ค. ๋จ์ผ LLM์ด ์ค์ค๋ก ํ ๊ตฌ์กฐ๋ฅผ ์๋ฎฌ๋ ์ด์
ํ๊ณ , ์์จ์ ์ผ๋ก ์ญํ ์ ์ํํ๋ฉฐ ๋ฌธ์ ๋ฅผ ํด๊ฒฐํ๋ ์์คํ
์ผ๋ก, Yann LeCun(Meta), OpenAI, Google DeepMind๊ฐ ๊ณตํต์ ์ผ๋ก ๊ฐ์กฐํ๋ AGI์ ์ ์ ์กฐ๊ฑด๋ค์ ์คํํฉ๋๋ค. |
|
|
|
### ๐ฏ AGI 1๋จ๊ณ์ ํต์ฌ ์๊ฑด |
|
1. **๊ณํ ์๋ฆฝ ๋ฅ๋ ฅ (Planning)** |
|
2. **์ญํ ๋ถํ ๋ฐ ๋ชจ๋ํ (Modularity)** |
|
3. **์๊ธฐ ๋ฐ์ฑ/ํผ๋๋ฐฑ ๋ฃจํ (Self-reflection & Feedback)** |
|
4. **๋๊ตฌ ์ฌ์ฉ ๋ฐ ์์จ ์คํ (Tool-use & Autonomy)** |
|
5. **์ง์์ ์ธ ๋ชฉํ ์ํ ๊ตฌ์กฐ (Long-term Agency)** |
|
|
|
SOMA๋ ์ด ๋ชจ๋ ์๊ตฌ์ฌํญ์ ๋จ์ผ LLM ๋ด๋ถ์์ ์ถฉ์กฑ์ํค๋ ์ค์ฉ์ ์ด๊ณ ๊ตฌ์ฒดํ ๊ฐ๋ฅํ ๊ตฌ์กฐ์
๋๋ค. |
|
|
|
## ๐ท SOMA์ 3๊ฐ์ง ํต์ฌ ๊ตฌ์ฑ ์์ |
|
|
|
### ๐งญ 1. Self-Orchestrating (์๊ธฐ ์งํ) |
|
- **์ธ๋ถ ์ง์ ์์ด** ์ค์ค๋ก ๋ฌธ์ ๋ฅผ ์ ์ํ๊ณ ์ญํ ์ ๋ถ๋ฐฐ |
|
- ์ ์ฒด ์ถ๋ก ๊ณผ ์คํ ๊ณผ์ ์ ์์จ์ ์ผ๋ก ์กฐ์จ |
|
- OpenAI์ "Agentic AI" ๊ฐ๋
๊ณผ ๋์ผํ ์๊ธฐ ์กฐ์ (self-regulation) ๋ฉ์ปค๋์ฆ |
|
- ์ค์๊ฐ ์ ์๊ณผ ๋์ ์ ๋ต ์์ ๋ฅ๋ ฅ |
|
|
|
### ๐งฉ 2. Modular (๋ชจ๋ํ) |
|
- ๋จ์ผ LLM์ด ๋ด๋ถ์ ์ผ๋ก **๋ค์ค ์ญํ **์ ๋์์ ์ํ |
|
- Meta AI์ "World Model + Planner + Memory + Actor" ๊ตฌ์กฐ ๊ตฌํ |
|
- 5๊ฐ์ ์ ๋ฌธํ๋ ๋ชจ๋: |
|
- ๐ฏ **Supervisor (๊ฐ๋
์)**: ์ ๋ต ์๋ฆฝ๊ณผ ์กฐ์จ |
|
- ๐ก **Creator (์ฐฝ์กฐ์)**: ํ์ ์ ๋ฌธ์ ํด๊ฒฐ |
|
- ๐ **Researcher (์กฐ์ฌ์)**: ์ ๋ณด ์์ง๊ณผ ๋ถ์ |
|
- โ๏ธ **Evaluator (ํ๊ฐ์)**: ๋นํ์ ๊ฒํ |
|
- ๐ **Analyst (๋ถ์๊ฐ)**: ์ข
ํฉ๊ณผ ๋ณด๊ณ |
|
|
|
### ๐ง 3. Architect (์ค๊ณ์) |
|
- ๋จ์ ์คํ๊ธฐ๋ฅผ ๋์ด์ **๊ณ ์ฐจ์ ์ฌ๊ณ ๋ฅ๋ ฅ** |
|
- ๋ฌธ์ ๋ฅผ ๊ตฌ์กฐํํ๊ณ ํด๊ฒฐ ๊ฒฝ๋ก๋ฅผ ์ค๊ณ |
|
- DeepMind์ Gato โ Gemini์์ ์๊ตฌํ๋ ๊ณํ-์ ์-๋ค๊ธฐ๋ฅ ์ํ |
|
- ์ฐฝ๋ฐ์ ์ง๋ฅ๊ณผ ๋ฉํ์ธ์ง ๋ฅ๋ ฅ |
|
|
|
## ๐ SOMA์ ์๋ ์๋ฆฌ |
|
|
|
### 1. **์์จ์ ๋ฌธ์ ์ธ์** |
|
``` |
|
์ฌ์ฉ์ ์ง๋ฌธ โ SOMA ์์ฒด ๋ถ์ โ ๋ฌธ์ ๊ตฌ์กฐํ โ ํด๊ฒฐ ์ ๋ต ์๋ฆฝ |
|
``` |
|
|
|
### 2. **๋์ ์ญํ ํ ๋น** |
|
``` |
|
๋จ์ผ LLM์ด ๋ด๋ถ์ ์ผ๋ก 5๊ฐ์ ๊ฐ์ ์์ด์ ํธ๋ก ๋ถํ |
|
๊ฐ ์์ด์ ํธ๋ ํนํ๋ ๊ด์ ๊ณผ ์ ๋ฌธ์ฑ์ผ๋ก ๋ฌธ์ ์ ๊ทผ |
|
``` |
|
|
|
### 3. **์ํ์ ํ์
ํ๋ก์ธ์ค** |
|
``` |
|
๋ถ์ โ ์ฐฝ์์ ํต์ฐฐ โ ๊ฒ์ฆ โ ์ ๋ณด ์์ง โ ํ๊ฐ โ ์ข
ํฉ |
|
โ โ |
|
โโโโโโโโโโโโโโ ํผ๋๋ฐฑ ๋ฃจํ โโโโโโโโโโโโโโโโโโโโโโโโโโ |
|
``` |
|
|
|
### 4. **์๊ธฐ ๊ฐ์ ๋ฉ์ปค๋์ฆ** |
|
- ๊ฐ ๋จ๊ณ๋ณ ์๊ธฐ ํ๊ฐ |
|
- ์ค์๊ฐ ์ ๋ต ์กฐ์ |
|
- ๋์ ํ์ต ํจ๊ณผ |
|
|
|
## ๐ก AGI ํ๋ ์์ํฌ์์ ์ ํฉ์ฑ |
|
|
|
### OpenAI์ ์๊ตฌ์ฌํญ |
|
- โ
**Agentic behavior**: ์์จ์ ํ๋๊ณผ ์์ฌ๊ฒฐ์ |
|
- โ
**Long-horizon planning**: ์ฅ๊ธฐ์ ๋ชฉํ ์ํ |
|
- โ
**Tool use**: ์น ๊ฒ์ ๋ฑ ์ธ๋ถ ๋๊ตฌ ํ์ฉ |
|
|
|
### Meta AI (Yann LeCun)์ ์๊ตฌ์ฌํญ |
|
- โ
**World Model**: ์ํฉ ์ดํด์ ๋ชจ๋ธ๋ง |
|
- โ
**Planning Module**: ์ ๋ต์ ๊ณํ ์๋ฆฝ |
|
- โ
**Memory**: ๋ํ ๊ธฐ๋ก๊ณผ ์ปจํ
์คํธ ์ ์ง |
|
- โ
**Actor**: ์ค์ ํ๋ ์ํ |
|
|
|
### Google DeepMind์ ์๊ตฌ์ฌํญ |
|
- โ
**Multi-modal reasoning**: ๋ค์ํ ํํ์ ์ถ๋ก |
|
- โ
**Adaptive behavior**: ์ํฉ์ ๋ฐ๋ฅธ ์ ์ |
|
- โ
**General problem solving**: ๋ฒ์ฉ ๋ฌธ์ ํด๊ฒฐ |
|
|
|
## ๐ฌ ๊ธฐ์ ์ ๊ตฌํ |
|
|
|
### ์ํคํ
์ฒ ํน์ง |
|
```python |
|
class SOMA: |
|
def __init__(self): |
|
self.modules = { |
|
'supervisor': SupervisorModule(), # ์ ๋ต๊ณผ ์กฐ์จ |
|
'creator': CreatorModule(), # ์ฐฝ์์ ์ฌ๊ณ |
|
'researcher': ResearcherModule(), # ์ ๋ณด ์ฒ๋ฆฌ |
|
'evaluator': EvaluatorModule(), # ๋นํ์ ๋ถ์ |
|
'analyst': AnalystModule() # ์ข
ํฉ๊ณผ ๋ณด๊ณ |
|
} |
|
self.feedback_loop = FeedbackSystem() |
|
self.memory = WorkingMemory() |
|
self.planner = StrategicPlanner() |
|
``` |
|
|
|
### ํต์ฌ ๋ฉ์ปค๋์ฆ |
|
1. **ํ๋กฌํํธ ์ฒด์ด๋**: ๊ฐ ๋ชจ๋ ๊ฐ ์ ๋ณด ์ ๋ฌ |
|
2. **์ปจํ
์คํธ ๊ด๋ฆฌ**: ์ ์ฒด ๋ํ ํ๋ฆ ์ ์ง |
|
3. **๋์ ์กฐ์ **: ์ค์๊ฐ ์ ๋ต ๋ณ๊ฒฝ |
|
4. **์๊ธฐ ํ๊ฐ**: ๊ฐ ๋จ๊ณ๋ณ ํ์ง ๊ฒ์ฆ |
|
|
|
## ๐ ์ฑ๋ฅ ์งํ |
|
|
|
### AGI 1๋จ๊ณ ์ถฉ์กฑ๋ |
|
| ์๊ตฌ์ฌํญ | SOMA ๊ตฌํ ์์ค | ์ฆ๊ฑฐ | |
|
|---------|---------------|------| |
|
| Planning | โญโญโญโญโญ | 11๋จ๊ณ ์ฒด๊ณ์ ํ๋ก์ธ์ค | |
|
| Modularity | โญโญโญโญโญ | 5๊ฐ ์ ๋ฌธ ๋ชจ๋ ์ด์ | |
|
| Self-reflection | โญโญโญโญโญ | 3ํ ๋ฐ๋ณต ํ๊ฐ ์์คํ
| |
|
| Tool-use | โญโญโญโญ | ์น ๊ฒ์, ๋ฌธ์ ์์ฑ | |
|
| Long-term Agency | โญโญโญโญ | ๋ํ ๊ธฐ๋ก ์ ์ง | |
|
|
|
## ๐ ์ค์น ๋ฐ ์คํ |
|
|
|
### ํ์ ์๊ตฌ์ฌํญ |
|
```bash |
|
Python 3.8+ |
|
Gradio (UI ํ๋ ์์ํฌ) |
|
LLM API (Friendli, OpenAI ๋ฑ) |
|
``` |
|
|
|
### ๋น ๋ฅธ ์์ |
|
```bash |
|
# ํด๋ก |
|
git clone https://github.com/your-repo/soma-agi |
|
|
|
# ์์กด์ฑ ์ค์น |
|
pip install -r requirements.txt |
|
|
|
# ํ๊ฒฝ ๋ณ์ ์ค์ |
|
export FRIENDLI_TOKEN=your_token |
|
export BAPI_TOKEN=your_brave_token |
|
|
|
# ์คํ |
|
python soma_system.py |
|
``` |
|
|
|
## ๐ฏ ํ์ฉ ์ฌ๋ก |
|
|
|
### 1. ๋ณต์กํ ์ฐ๊ตฌ ๊ณผ์ |
|
- ๊ธฐํ ๋ณํ ํด๊ฒฐ์ฑ
ํ๊ตฌ |
|
- ์ ์ฝ ๊ฐ๋ฐ ์ ๋ต ์๋ฆฝ |
|
- ๊ฒฝ์ ์ ์ฑ
์ํฅ ๋ถ์ |
|
|
|
### 2. ์ฐฝ์์ ๋ฌธ์ ํด๊ฒฐ |
|
- ๋น์ฆ๋์ค ํ์ ์ ๋ต |
|
- ๊ธฐ์ ์ตํฉ ์์ด๋์ด |
|
- ๋ฏธ๋ ์๋๋ฆฌ์ค ๊ธฐํ |
|
|
|
### 3. ํ์ ์ ๋ถ์ |
|
- ๋คํ์ ์ ์ฐ๊ตฌ ์ข
ํฉ |
|
- ์ด๋ก ๊ณผ ์ค๋ฌด์ ํตํฉ |
|
- ๋นํ์ ๋ฌธํ ๊ฒํ |
|
|
|
## ๐ฎ ๋ฏธ๋ ๋ก๋๋งต |
|
|
|
### Phase 1: Current (AGI Level 1) |
|
- โ
Self-orchestration |
|
- โ
Modular architecture |
|
- โ
Basic tool use |
|
|
|
### Phase 2: Enhancement |
|
- ๐ Multi-modal processing |
|
- ๐ Enhanced memory systems |
|
- ๐ Advanced planning algorithms |
|
|
|
### Phase 3: AGI Level 2 |
|
- ๐
True autonomy |
|
- ๐
Cross-domain transfer |
|
- ๐
Emergent capabilities |
|
|
|
## ๐ค ๊ธฐ์ฌ ๋ฐฉ๋ฒ |
|
|
|
SOMA๋ AGI ์คํ์ ์ํ ์คํ ์ฐ๊ตฌ ํ๋ก์ ํธ์
๋๋ค. |
|
|
|
1. **์ฐ๊ตฌ ๊ธฐ์ฌ**: AGI ์ด๋ก ๋ฐ์ |
|
2. **์ฝ๋ ๊ธฐ์ฌ**: ๊ตฌํ ๊ฐ์ |
|
3. **์์ฉ ์ฐ๊ตฌ**: ์๋ก์ด ํ์ฉ ์ฌ๋ก |
|
4. **ํผ๋๋ฐฑ**: ์ฑ๋ฅ ํ๊ฐ์ ์ ์ |
|
|
|
## ๐ ์ฐธ๊ณ ๋ฌธํ |
|
|
|
- LeCun, Y. (2023). "A Path Towards Autonomous Machine Intelligence" |
|
- OpenAI. (2023). "Planning and Tool Use in Language Models" |
|
- Hassabis, D. et al. (2023). "Towards AGI: Lessons from DeepMind" |
|
|
|
## ๐ ๋ผ์ด์ ์ค ๋ฐ ๋
ผ๋ฌธ |
|
|
|
๋
ผ๋ฌธ ์์ฑ/๋ฐฐํฌ ํ ๋ผ์ด์ ์ค ๊ณต๊ฐ ์์ |
|
|
|
--- |
|
|
|
### ๐ ๊ฒฐ๋ก |
|
|
|
**SOMA๋ AGI 1๋จ๊ณ์ ํต์ฌ ๊ตฌํ ๋ ๋ฒจ(Level 1)๋ก์, ํ์ฌ ๊ธฐ์ ๋ก ์คํ ๊ฐ๋ฅํ ๊ฐ์ฅ ๊ตฌ์ฒด์ ์ด๊ณ ์ค์ฉ์ ์ธ AGI ์ํคํ
์ฒ์
๋๋ค.** |
|
|
|
๋จ์ผ LLM์ด ๊ฐ์์ ํ์ผ๋ก ๋ถํํ์ฌ, ๋ด๋ถ์ ์ผ๋ก ๋ค์ํ ์ญํ ์ ์ํํ๋ฉฐ ํจ๊ป ์ฌ๊ณ ํ๊ณ ์ค๊ณํ๊ณ ์คํํ๋ '์๊ธฐ ์งํํ ๋ค์คํ ์ง๋ฅ ๊ตฌ์กฐ'๋ฅผ ํตํด, ์ฐ๋ฆฌ๋ AGI๋ก ๊ฐ๋ ์ฒซ ๋ฒ์งธ ๋จ๊ณ๋ฅผ ์ฑ๊ณต์ ์ผ๋ก ๊ตฌํํ์ต๋๋ค. |
|
|
|
*"The future of AI is not a single superintelligence, but a symphony of specialized modules working in perfect harmony."* |
|
|
|
--- |
|
|
|
**SOMA** - *Self-Orchestrating Modular Architect* |
|
*AGI์ ์์, ์ง๋ฅ์ ๋ฏธ๋* |