|
|
|
|
|
import numpy as np
|
|
import torch
|
|
from einops import rearrange
|
|
from PIL import Image
|
|
|
|
|
|
def convert_to_numpy(image):
|
|
if isinstance(image, Image.Image):
|
|
image = np.array(image)
|
|
elif isinstance(image, torch.Tensor):
|
|
image = image.detach().cpu().numpy()
|
|
elif isinstance(image, np.ndarray):
|
|
image = image.copy()
|
|
else:
|
|
raise f'Unsurpport datatype{type(image)}, only surpport np.ndarray, torch.Tensor, Pillow Image.'
|
|
return image
|
|
|
|
class DepthV2Annotator:
|
|
def __init__(self, cfg, device=None):
|
|
from .dpt import DepthAnythingV2
|
|
|
|
|
|
self.model_configs = {
|
|
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
|
|
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
|
|
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
|
|
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
|
|
}
|
|
|
|
|
|
model_variant = cfg.get('MODEL_VARIANT', 'vitl')
|
|
if model_variant not in self.model_configs:
|
|
raise ValueError(f"Invalid model variant '{model_variant}'. Must be one of: {list(self.model_configs.keys())}")
|
|
|
|
pretrained_model = cfg['PRETRAINED_MODEL']
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else device
|
|
|
|
|
|
config = self.model_configs[model_variant]
|
|
|
|
|
|
self.model = DepthAnythingV2(
|
|
encoder=config['encoder'],
|
|
features=config['features'],
|
|
out_channels=config['out_channels']
|
|
).to(self.device)
|
|
|
|
self.model.load_state_dict(
|
|
torch.load(
|
|
pretrained_model,
|
|
map_location=self.device,
|
|
weights_only=True
|
|
)
|
|
)
|
|
self.model.eval()
|
|
|
|
@torch.inference_mode()
|
|
@torch.autocast('cuda', enabled=False)
|
|
def forward(self, image):
|
|
image = convert_to_numpy(image)
|
|
depth = self.model.infer_image(image)
|
|
|
|
depth_pt = depth.copy()
|
|
depth_pt -= np.min(depth_pt)
|
|
depth_pt /= np.max(depth_pt)
|
|
depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8)
|
|
|
|
depth_image = depth_image[..., np.newaxis]
|
|
depth_image = np.repeat(depth_image, 3, axis=2)
|
|
return depth_image
|
|
|
|
|
|
class DepthV2VideoAnnotator(DepthV2Annotator):
|
|
def forward(self, frames):
|
|
ret_frames = []
|
|
for frame in frames:
|
|
anno_frame = super().forward(np.array(frame))
|
|
ret_frames.append(anno_frame)
|
|
return ret_frames |