Spaces:
Sleeping
Sleeping
File size: 6,876 Bytes
e40d8f8 74d4f11 e40d8f8 74d4f11 e40d8f8 74d4f11 e40d8f8 74d4f11 e40d8f8 74d4f11 970694a 74d4f11 e40d8f8 970694a 74d4f11 970694a 74d4f11 e40d8f8 74d4f11 e40d8f8 74d4f11 e40d8f8 74d4f11 e40d8f8 970694a e40d8f8 970694a e40d8f8 970694a e40d8f8 970694a 74d4f11 970694a e40d8f8 74d4f11 e40d8f8 74d4f11 e40d8f8 970694a e40d8f8 74d4f11 970694a e40d8f8 74d4f11 970694a e40d8f8 74d4f11 e40d8f8 74d4f11 e40d8f8 74d4f11 970694a e40d8f8 970694a e40d8f8 970694a e40d8f8 74d4f11 e40d8f8 74d4f11 970694a e40d8f8 970694a e40d8f8 74d4f11 970694a e40d8f8 970694a 74d4f11 970694a 74d4f11 e40d8f8 970694a 74d4f11 e40d8f8 74d4f11 e40d8f8 74d4f11 e40d8f8 970694a 74d4f11 970694a e40d8f8 970694a e40d8f8 970694a 74d4f11 e40d8f8 970694a e40d8f8 74d4f11 e40d8f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
#!/usr/bin/env python
# coding: utf-8
import os
import pickle
import faiss
import numpy as np
import torch
import gradio as gr
from datasets import load_dataset
from sentence_transformers import SentenceTransformer, CrossEncoder
from transformers import (
AutoTokenizer,
AutoModelForSeq2SeqLM,
pipeline as hf_pipeline,
)
# ββ 1. Configuration ββ
DATA_DIR = os.path.join(os.getcwd(), "data")
INDEX_PATH = os.path.join(DATA_DIR, "faiss_index.faiss")
EMB_PATH = os.path.join(DATA_DIR, "embeddings.npy")
PCTX_PATH = os.path.join(DATA_DIR, "passages.pkl")
MODEL_NAME = os.getenv("MODEL_NAME", "google/flan-t5-small")
EMBEDDER_MODEL = os.getenv("EMBEDDER_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
DIST_THRESHOLD = float(os.getenv("DIST_THRESHOLD", 1.0))
MAX_CTX_WORDS = int(os.getenv("MAX_CTX_WORDS", 200))
DEVICE = 0 if torch.cuda.is_available() else -1
os.makedirs(DATA_DIR, exist_ok=True)
print(f"MODEL={MODEL_NAME}, EMBEDDER={EMBEDDER_MODEL}, DEVICE={'GPU' if DEVICE==0 else 'CPU'}")
# ββ 2. Helpers ββ
def make_context_snippets(contexts, max_words=MAX_CTX_WORDS):
snippets = []
for c in contexts:
words = c.split()
if len(words) > max_words:
c = " ".join(words[:max_words]) + " ... [truncated]"
snippets.append(c)
return snippets
def chunk_text(text, max_tokens, stride=None):
words = text.split()
if stride is None:
stride = max_tokens // 4
chunks, start = [], 0
while start < len(words):
end = start + max_tokens
chunks.append(" ".join(words[start:end]))
start += stride
return chunks
# ββ 3. Load & preprocess passages ββ
def load_passages():
# 3.1 load raw corpora
wiki_ds = load_dataset("rag-datasets/rag-mini-wikipedia", "text-corpus", split="passages")
squad_ds = load_dataset("rajpurkar/squad_v2", split="train[:100]")
trivia_ds = load_dataset("mandarjoshi/trivia_qa", "rc", split="validation[:100]")
wiki_passages = wiki_ds["passage"]
squad_passages = [ex["context"] for ex in squad_ds]
trivia_passages = []
for ex in trivia_ds:
for fld in ("wiki_context", "search_context"):
txt = ex.get(fld) or ""
if txt:
trivia_passages.append(txt)
# dedupe
all_passages = list(dict.fromkeys(wiki_passages + squad_passages + trivia_passages))
# chunk long passages
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
max_tokens = tokenizer.model_max_length
chunks = []
for p in all_passages:
toks = tokenizer.tokenize(p)
if len(toks) > max_tokens:
chunks.extend(chunk_text(p, max_tokens))
else:
chunks.append(p)
print(f"[load_passages] total chunks: {len(chunks)}")
with open(PCTX_PATH, "wb") as f:
pickle.dump(chunks, f)
return chunks
# ββ 4. Build or load FAISS ββ
def load_faiss_index(passages):
embedder = SentenceTransformer(EMBEDDER_MODEL)
reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
if os.path.exists(INDEX_PATH) and os.path.exists(EMB_PATH):
print("Loading FAISS index & embeddingsβ¦")
index = faiss.read_index(INDEX_PATH)
embeddings = np.load(EMB_PATH)
else:
print("Encoding passages & building FAISS indexβ¦")
embeddings = embedder.encode(
passages,
show_progress_bar=True,
convert_to_numpy=True,
batch_size=32
)
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
dim = embeddings.shape[1]
index = faiss.IndexFlatIP(dim)
index.add(embeddings)
faiss.write_index(index, INDEX_PATH)
np.save(EMB_PATH, embeddings)
return embedder, reranker, index
# ββ 5. Initialize RAG components ββ
def setup_rag():
if os.path.exists(PCTX_PATH):
with open(PCTX_PATH, "rb") as f:
passages = pickle.load(f)
else:
passages = load_passages()
embedder, reranker, index = load_faiss_index(passages)
tok = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
qa_pipe = hf_pipeline(
"text2text-generation",
model=model,
tokenizer=tok,
device=DEVICE,
truncation=True,
max_length=512,
num_beams=4,
early_stopping=True
)
return passages, embedder, reranker, index, qa_pipe
# ββ 6. Retrieval & generation ββ
def retrieve(question, passages, embedder, index, k=20, rerank_k=5):
q_emb = embedder.encode([question], convert_to_numpy=True)
distances, idxs = index.search(q_emb, k)
cands = [passages[i] for i in idxs[0]]
scores = reranker.predict([[question, c] for c in cands])
top = np.argsort(scores)[-rerank_k:][::-1]
return [cands[i] for i in top], [distances[0][i] for i in top]
def generate(question, contexts, qa_pipe):
lines = [
f"Context {i+1}: {s}"
for i, s in enumerate(make_context_snippets(contexts))
]
prompt = (
"You are a helpful assistant. Use ONLY the following contexts to answer. "
"If the answer is not contained, say 'Sorry, I don't know.'\n\n"
+ "\n".join(lines)
+ f"\n\nQuestion: {question}\nAnswer:"
)
return qa_pipe(prompt)[0]["generated_text"].strip()
def retrieve_and_answer(question, passages, embedder, reranker, index, qa_pipe):
contexts, dists = retrieve(question, passages, embedder, index)
if not contexts or dists[0] > DIST_THRESHOLD:
return "Sorry, I don't know.", []
return generate(question, contexts, qa_pipe), contexts
def answer_and_contexts(question, passages, embedder, reranker, index, qa_pipe):
ans, ctxs = retrieve_and_answer(question, passages, embedder, reranker, index, qa_pipe)
if not ctxs:
return ans, ""
snippets = [
f"Context {i+1}: {s}"
for i, s in enumerate(make_context_snippets(ctxs))
]
return ans, "\n\n---\n\n".join(snippets)
# ββ 7. Gradio app ββ
def main():
passages, embedder, reranker, index, qa_pipe = setup_rag()
demo = gr.Interface(
fn=lambda q: answer_and_contexts(q, passages, embedder, reranker, index, qa_pipe),
inputs=gr.Textbox(lines=1, placeholder="Ask me anythingβ¦", label="Question"),
outputs=[gr.Textbox(label="Answer"), gr.Textbox(label="Contexts")],
title="π RAG QA Demo",
description="Retrieval-Augmented QA with threshold and context preview",
examples=[
"When was Abraham Lincoln inaugurated?",
"What is the capital of France?",
"Who wrote '1984'?"
],
allow_flagging="never",
)
demo.launch()
if __name__ == "__main__":
main()
|