File size: 9,952 Bytes
e40d8f8
 
74d4f11
 
 
728106c
74d4f11
 
 
 
 
e40d8f8
 
 
 
 
 
 
728106c
74d4f11
e40d8f8
 
 
 
 
74d4f11
 
 
e40d8f8
 
74d4f11
e40d8f8
 
74d4f11
 
e40d8f8
 
970694a
74d4f11
 
 
 
970694a
 
74d4f11
e40d8f8
74d4f11
 
e40d8f8
 
74d4f11
 
e40d8f8
74d4f11
 
 
728106c
e40d8f8
 
970694a
 
e40d8f8
970694a
728106c
 
970694a
e40d8f8
 
 
970694a
 
e40d8f8
970694a
728106c
 
74d4f11
e40d8f8
 
 
 
 
 
 
 
 
 
 
 
74d4f11
728106c
e40d8f8
 
 
 
74d4f11
e40d8f8
970694a
 
e40d8f8
74d4f11
970694a
 
 
 
 
 
 
e40d8f8
74d4f11
970694a
e40d8f8
 
74d4f11
e40d8f8
 
74d4f11
e40d8f8
74d4f11
728106c
970694a
e40d8f8
 
 
 
 
 
 
 
 
970694a
e40d8f8
 
 
 
 
 
 
 
970694a
e40d8f8
74d4f11
 
e40d8f8
74d4f11
728106c
970694a
728106c
970694a
e40d8f8
74d4f11
970694a
e40d8f8
970694a
74d4f11
970694a
74d4f11
e40d8f8
970694a
 
 
 
74d4f11
 
 
e40d8f8
74d4f11
 
e40d8f8
74d4f11
e40d8f8
728106c
970694a
74d4f11
970694a
e40d8f8
970694a
e40d8f8
 
 
 
970694a
 
74d4f11
e40d8f8
 
728106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e40d8f8
 
 
728106c
 
 
 
e40d8f8
728106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74d4f11
e40d8f8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#!/usr/bin/env python
# coding: utf-8

import os
import pickle
import argparse
import faiss
import numpy as np
import torch
import gradio as gr

from datasets import load_dataset
from sentence_transformers import SentenceTransformer, CrossEncoder
from transformers import (
    AutoTokenizer,
    AutoModelForSeq2SeqLM,
    pipeline as hf_pipeline,
)
import evaluate

# ── 1. Configuration ──
DATA_DIR       = os.path.join(os.getcwd(), "data")
INDEX_PATH     = os.path.join(DATA_DIR, "faiss_index.faiss")
EMB_PATH       = os.path.join(DATA_DIR, "embeddings.npy")
PCTX_PATH      = os.path.join(DATA_DIR, "passages.pkl")

MODEL_NAME     = os.getenv("MODEL_NAME", "google/flan-t5-small")
EMBEDDER_MODEL = os.getenv("EMBEDDER_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
DIST_THRESHOLD = float(os.getenv("DIST_THRESHOLD", 1.0))
MAX_CTX_WORDS  = int(os.getenv("MAX_CTX_WORDS", 200))

DEVICE = 0 if torch.cuda.is_available() else -1
os.makedirs(DATA_DIR, exist_ok=True)


# ── 2. Helpers ──
def make_context_snippets(contexts, max_words=MAX_CTX_WORDS):
    snippets = []
    for c in contexts:
        words = c.split()
        if len(words) > max_words:
            c = " ".join(words[:max_words]) + " ... [truncated]"
        snippets.append(c)
    return snippets

def chunk_text(text, max_tokens, stride=None):
    words = text.split()
    if stride is None:
        stride = max_tokens // 4
    chunks, start = [], 0
    while start < len(words):
        end = start + max_tokens
        chunks.append(" ".join(words[start:end]))
        start += stride
    return chunks


# ── 3. Load & preprocess passages ──
def load_passages():
    wiki_ds   = load_dataset("rag-datasets/rag-mini-wikipedia", "text-corpus", split="passages")
    squad_ds  = load_dataset("rajpurkar/squad_v2", split="train[:100]")
    trivia_ds = load_dataset("mandarjoshi/trivia_qa", "rc", split="validation[:100]")

    wiki_passages  = wiki_ds["passage"]
    squad_passages = [ex["context"] for ex in squad_ds]
    trivia_passages = []
    for ex in trivia_ds:
        for fld in ("wiki_context", "search_context"):
            txt = ex.get(fld) or ""
            if txt:
                trivia_passages.append(txt)

    all_passages = list(dict.fromkeys(wiki_passages + squad_passages + trivia_passages))
    tokenizer   = AutoTokenizer.from_pretrained(MODEL_NAME)
    max_tokens  = tokenizer.model_max_length

    chunks = []
    for p in all_passages:
        toks = tokenizer.tokenize(p)
        if len(toks) > max_tokens:
            chunks.extend(chunk_text(p, max_tokens))
        else:
            chunks.append(p)

    print(f"[load_passages] total chunks: {len(chunks)}")
    with open(PCTX_PATH, "wb") as f:
        pickle.dump(chunks, f)
    return chunks


# ── 4. Build or load FAISS ──
def load_faiss_index(passages):
    embedder = SentenceTransformer(EMBEDDER_MODEL)
    reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")

    if os.path.exists(INDEX_PATH) and os.path.exists(EMB_PATH):
        print("Loading FAISS index & embeddings…")
        index      = faiss.read_index(INDEX_PATH)
        embeddings = np.load(EMB_PATH)
    else:
        print("Encoding passages & building FAISS index…")
        embeddings = embedder.encode(
            passages,
            show_progress_bar=True,
            convert_to_numpy=True,
            batch_size=32
        )
        embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)

        dim   = embeddings.shape[1]
        index = faiss.IndexFlatIP(dim)
        index.add(embeddings)

        faiss.write_index(index, INDEX_PATH)
        np.save(EMB_PATH, embeddings)

    return embedder, reranker, index


# ── 5. Initialize RAG components ──
def setup_rag():
    if os.path.exists(PCTX_PATH):
        with open(PCTX_PATH, "rb") as f:
            passages = pickle.load(f)
    else:
        passages = load_passages()

    embedder, reranker, index = load_faiss_index(passages)

    tok   = AutoTokenizer.from_pretrained(MODEL_NAME)
    model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
    qa_pipe = hf_pipeline(
        "text2text-generation",
        model=model,
        tokenizer=tok,
        device=DEVICE,
        truncation=True,
        max_length=512,
        num_beams=4,
        early_stopping=True
    )

    return passages, embedder, reranker, index, qa_pipe


# ── 6. Retrieval & generation ──
def retrieve(question, passages, embedder, reranker, index, k=20, rerank_k=5):
    q_emb      = embedder.encode([question], convert_to_numpy=True)
    distances, idxs = index.search(q_emb, k)

    cands  = [passages[i] for i in idxs[0]]
    scores = reranker.predict([[question, c] for c in cands])
    top    = np.argsort(scores)[-rerank_k:][::-1]

    return [cands[i] for i in top], [distances[0][i] for i in top]

def generate(question, contexts, qa_pipe):
    lines = [
        f"Context {i+1}: {s}"
        for i, s in enumerate(make_context_snippets(contexts))
    ]
    prompt = (
        "You are a helpful assistant. Use ONLY the following contexts to answer. "
        "If the answer is not contained, say 'Sorry, I don't know.'\n\n"
        + "\n".join(lines)
        + f"\n\nQuestion: {question}\nAnswer:"
    )
    return qa_pipe(prompt)[0]["generated_text"].strip()

def retrieve_and_answer(question, passages, embedder, reranker, index, qa_pipe):
    contexts, dists = retrieve(question, passages, embedder, reranker, index)
    if not contexts or dists[0] > DIST_THRESHOLD:
        return "Sorry, I don't know.", []
    return generate(question, contexts, qa_pipe), contexts

def answer_and_contexts(question, passages, embedder, reranker, index, qa_pipe):
    ans, ctxs = retrieve_and_answer(question, passages, embedder, reranker, index, qa_pipe)
    if not ctxs:
        return ans, ""
    snippets = [
        f"Context {i+1}: {s}"
        for i, s in enumerate(make_context_snippets(ctxs))
    ]
    return ans, "\n\n---\n\n".join(snippets)


# ── 7. Evaluation routines ──
def retrieval_recall(dataset, passages, embedder, reranker, index, k=20, rerank_k=None, num_samples=100):
    hits = 0
    for ex in dataset.select(range(num_samples)):
        question     = ex["question"]
        gold_answers = ex["answers"]["text"]

        if rerank_k:
            ctxs, _ = retrieve(question, passages, embedder, reranker, index, k=k, rerank_k=rerank_k)
        else:
            q_emb      = embedder.encode([question], convert_to_numpy=True)
            distances, idxs = index.search(q_emb, k)
            ctxs = [passages[i] for i in idxs[0]]

        if any(any(ans in ctx for ctx in ctxs) for ans in gold_answers):
            hits += 1

    recall = hits / num_samples
    print(f"Retrieval Recall@{k} (rerank_k={rerank_k}): {recall:.3f} ({hits}/{num_samples})")
    return recall

def retrieval_recall_answerable(dataset, passages, embedder, reranker, index, k=20, rerank_k=None, num_samples=100):
    hits, total = 0, 0
    for ex in dataset.select(range(num_samples)):
        gold = ex["answers"]["text"]
        if not gold:
            continue
        total += 1
        question = ex["question"]

        if rerank_k:
            ctxs, _ = retrieve(question, passages, embedder, reranker, index, k=k, rerank_k=rerank_k)
        else:
            q_emb      = embedder.encode([question], convert_to_numpy=True)
            distances, idxs = index.search(q_emb, k)
            ctxs = [passages[i] for i in idxs[0]]

        if any(any(ans in ctx for ctx in ctxs) for ans in gold):
            hits += 1

    recall = hits / total if total > 0 else 0.0
    print(f"Retrieval Recall@{k} on answerable only (rerank_k={rerank_k}): {recall:.3f} ({hits}/{total})")
    return recall

def qa_eval_answerable(dataset, passages, embedder, reranker, index, qa_pipe, k=20, num_samples=100):
    squad_metric = evaluate.load("squad")
    preds, refs  = [], []
    for ex in dataset.select(range(num_samples)):
        gold = ex["answers"]["text"]
        if not gold:
            continue
        qid = ex["id"]
        answer, _ = retrieve_and_answer(ex["question"], passages, embedder, reranker, index, qa_pipe)
        preds.append({"id": qid, "prediction_text": answer})
        refs.append({"id": qid, "answers": ex["answers"]})

    results = squad_metric.compute(predictions=preds, references=refs)
    print(f"Answerable-only QA EM: {results['exact_match']:.2f}, F1: {results['f1']:.2f}")
    return results


# ── 8. Main entry ──
def main():
    passages, embedder, reranker, index, qa_pipe = setup_rag()

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--eval", action="store_true",
        help="Run retrieval/QA evaluations on SQuAD instead of launching the demo"
    )
    args = parser.parse_args()

    if args.eval:
        squad = load_dataset("rajpurkar/squad_v2", split="validation")
        retrieval_recall(squad, passages, embedder, reranker, index, k=20, rerank_k=5, num_samples=100)
        retrieval_recall_answerable(squad, passages, embedder, reranker, index, k=20, rerank_k=5, num_samples=100)
        qa_eval_answerable(squad, passages, embedder, reranker, index, qa_pipe, k=20, num_samples=100)
    else:
        demo = gr.Interface(
            fn=lambda q: answer_and_contexts(q, passages, embedder, reranker, index, qa_pipe),
            inputs=gr.Textbox(lines=1, placeholder="Ask me anything…", label="Question"),
            outputs=[gr.Textbox(label="Answer"), gr.Textbox(label="Contexts")],
            title="πŸ” RAG QA Demo",
            description="Retrieval-Augmented QA with threshold and context preview",
            examples=[
                "When was Abraham Lincoln inaugurated?",
                "What is the capital of France?",
                "Who wrote '1984'?"
            ],
            allow_flagging="never",
        )
        demo.launch()

if __name__ == "__main__":
    main()