Spaces:
Sleeping
Sleeping
File size: 9,952 Bytes
e40d8f8 74d4f11 728106c 74d4f11 e40d8f8 728106c 74d4f11 e40d8f8 74d4f11 e40d8f8 74d4f11 e40d8f8 74d4f11 e40d8f8 970694a 74d4f11 970694a 74d4f11 e40d8f8 74d4f11 e40d8f8 74d4f11 e40d8f8 74d4f11 728106c e40d8f8 970694a e40d8f8 970694a 728106c 970694a e40d8f8 970694a e40d8f8 970694a 728106c 74d4f11 e40d8f8 74d4f11 728106c e40d8f8 74d4f11 e40d8f8 970694a e40d8f8 74d4f11 970694a e40d8f8 74d4f11 970694a e40d8f8 74d4f11 e40d8f8 74d4f11 e40d8f8 74d4f11 728106c 970694a e40d8f8 970694a e40d8f8 970694a e40d8f8 74d4f11 e40d8f8 74d4f11 728106c 970694a 728106c 970694a e40d8f8 74d4f11 970694a e40d8f8 970694a 74d4f11 970694a 74d4f11 e40d8f8 970694a 74d4f11 e40d8f8 74d4f11 e40d8f8 74d4f11 e40d8f8 728106c 970694a 74d4f11 970694a e40d8f8 970694a e40d8f8 970694a 74d4f11 e40d8f8 728106c e40d8f8 728106c e40d8f8 728106c 74d4f11 e40d8f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
#!/usr/bin/env python
# coding: utf-8
import os
import pickle
import argparse
import faiss
import numpy as np
import torch
import gradio as gr
from datasets import load_dataset
from sentence_transformers import SentenceTransformer, CrossEncoder
from transformers import (
AutoTokenizer,
AutoModelForSeq2SeqLM,
pipeline as hf_pipeline,
)
import evaluate
# ββ 1. Configuration ββ
DATA_DIR = os.path.join(os.getcwd(), "data")
INDEX_PATH = os.path.join(DATA_DIR, "faiss_index.faiss")
EMB_PATH = os.path.join(DATA_DIR, "embeddings.npy")
PCTX_PATH = os.path.join(DATA_DIR, "passages.pkl")
MODEL_NAME = os.getenv("MODEL_NAME", "google/flan-t5-small")
EMBEDDER_MODEL = os.getenv("EMBEDDER_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
DIST_THRESHOLD = float(os.getenv("DIST_THRESHOLD", 1.0))
MAX_CTX_WORDS = int(os.getenv("MAX_CTX_WORDS", 200))
DEVICE = 0 if torch.cuda.is_available() else -1
os.makedirs(DATA_DIR, exist_ok=True)
# ββ 2. Helpers ββ
def make_context_snippets(contexts, max_words=MAX_CTX_WORDS):
snippets = []
for c in contexts:
words = c.split()
if len(words) > max_words:
c = " ".join(words[:max_words]) + " ... [truncated]"
snippets.append(c)
return snippets
def chunk_text(text, max_tokens, stride=None):
words = text.split()
if stride is None:
stride = max_tokens // 4
chunks, start = [], 0
while start < len(words):
end = start + max_tokens
chunks.append(" ".join(words[start:end]))
start += stride
return chunks
# ββ 3. Load & preprocess passages ββ
def load_passages():
wiki_ds = load_dataset("rag-datasets/rag-mini-wikipedia", "text-corpus", split="passages")
squad_ds = load_dataset("rajpurkar/squad_v2", split="train[:100]")
trivia_ds = load_dataset("mandarjoshi/trivia_qa", "rc", split="validation[:100]")
wiki_passages = wiki_ds["passage"]
squad_passages = [ex["context"] for ex in squad_ds]
trivia_passages = []
for ex in trivia_ds:
for fld in ("wiki_context", "search_context"):
txt = ex.get(fld) or ""
if txt:
trivia_passages.append(txt)
all_passages = list(dict.fromkeys(wiki_passages + squad_passages + trivia_passages))
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
max_tokens = tokenizer.model_max_length
chunks = []
for p in all_passages:
toks = tokenizer.tokenize(p)
if len(toks) > max_tokens:
chunks.extend(chunk_text(p, max_tokens))
else:
chunks.append(p)
print(f"[load_passages] total chunks: {len(chunks)}")
with open(PCTX_PATH, "wb") as f:
pickle.dump(chunks, f)
return chunks
# ββ 4. Build or load FAISS ββ
def load_faiss_index(passages):
embedder = SentenceTransformer(EMBEDDER_MODEL)
reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
if os.path.exists(INDEX_PATH) and os.path.exists(EMB_PATH):
print("Loading FAISS index & embeddingsβ¦")
index = faiss.read_index(INDEX_PATH)
embeddings = np.load(EMB_PATH)
else:
print("Encoding passages & building FAISS indexβ¦")
embeddings = embedder.encode(
passages,
show_progress_bar=True,
convert_to_numpy=True,
batch_size=32
)
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
dim = embeddings.shape[1]
index = faiss.IndexFlatIP(dim)
index.add(embeddings)
faiss.write_index(index, INDEX_PATH)
np.save(EMB_PATH, embeddings)
return embedder, reranker, index
# ββ 5. Initialize RAG components ββ
def setup_rag():
if os.path.exists(PCTX_PATH):
with open(PCTX_PATH, "rb") as f:
passages = pickle.load(f)
else:
passages = load_passages()
embedder, reranker, index = load_faiss_index(passages)
tok = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
qa_pipe = hf_pipeline(
"text2text-generation",
model=model,
tokenizer=tok,
device=DEVICE,
truncation=True,
max_length=512,
num_beams=4,
early_stopping=True
)
return passages, embedder, reranker, index, qa_pipe
# ββ 6. Retrieval & generation ββ
def retrieve(question, passages, embedder, reranker, index, k=20, rerank_k=5):
q_emb = embedder.encode([question], convert_to_numpy=True)
distances, idxs = index.search(q_emb, k)
cands = [passages[i] for i in idxs[0]]
scores = reranker.predict([[question, c] for c in cands])
top = np.argsort(scores)[-rerank_k:][::-1]
return [cands[i] for i in top], [distances[0][i] for i in top]
def generate(question, contexts, qa_pipe):
lines = [
f"Context {i+1}: {s}"
for i, s in enumerate(make_context_snippets(contexts))
]
prompt = (
"You are a helpful assistant. Use ONLY the following contexts to answer. "
"If the answer is not contained, say 'Sorry, I don't know.'\n\n"
+ "\n".join(lines)
+ f"\n\nQuestion: {question}\nAnswer:"
)
return qa_pipe(prompt)[0]["generated_text"].strip()
def retrieve_and_answer(question, passages, embedder, reranker, index, qa_pipe):
contexts, dists = retrieve(question, passages, embedder, reranker, index)
if not contexts or dists[0] > DIST_THRESHOLD:
return "Sorry, I don't know.", []
return generate(question, contexts, qa_pipe), contexts
def answer_and_contexts(question, passages, embedder, reranker, index, qa_pipe):
ans, ctxs = retrieve_and_answer(question, passages, embedder, reranker, index, qa_pipe)
if not ctxs:
return ans, ""
snippets = [
f"Context {i+1}: {s}"
for i, s in enumerate(make_context_snippets(ctxs))
]
return ans, "\n\n---\n\n".join(snippets)
# ββ 7. Evaluation routines ββ
def retrieval_recall(dataset, passages, embedder, reranker, index, k=20, rerank_k=None, num_samples=100):
hits = 0
for ex in dataset.select(range(num_samples)):
question = ex["question"]
gold_answers = ex["answers"]["text"]
if rerank_k:
ctxs, _ = retrieve(question, passages, embedder, reranker, index, k=k, rerank_k=rerank_k)
else:
q_emb = embedder.encode([question], convert_to_numpy=True)
distances, idxs = index.search(q_emb, k)
ctxs = [passages[i] for i in idxs[0]]
if any(any(ans in ctx for ctx in ctxs) for ans in gold_answers):
hits += 1
recall = hits / num_samples
print(f"Retrieval Recall@{k} (rerank_k={rerank_k}): {recall:.3f} ({hits}/{num_samples})")
return recall
def retrieval_recall_answerable(dataset, passages, embedder, reranker, index, k=20, rerank_k=None, num_samples=100):
hits, total = 0, 0
for ex in dataset.select(range(num_samples)):
gold = ex["answers"]["text"]
if not gold:
continue
total += 1
question = ex["question"]
if rerank_k:
ctxs, _ = retrieve(question, passages, embedder, reranker, index, k=k, rerank_k=rerank_k)
else:
q_emb = embedder.encode([question], convert_to_numpy=True)
distances, idxs = index.search(q_emb, k)
ctxs = [passages[i] for i in idxs[0]]
if any(any(ans in ctx for ctx in ctxs) for ans in gold):
hits += 1
recall = hits / total if total > 0 else 0.0
print(f"Retrieval Recall@{k} on answerable only (rerank_k={rerank_k}): {recall:.3f} ({hits}/{total})")
return recall
def qa_eval_answerable(dataset, passages, embedder, reranker, index, qa_pipe, k=20, num_samples=100):
squad_metric = evaluate.load("squad")
preds, refs = [], []
for ex in dataset.select(range(num_samples)):
gold = ex["answers"]["text"]
if not gold:
continue
qid = ex["id"]
answer, _ = retrieve_and_answer(ex["question"], passages, embedder, reranker, index, qa_pipe)
preds.append({"id": qid, "prediction_text": answer})
refs.append({"id": qid, "answers": ex["answers"]})
results = squad_metric.compute(predictions=preds, references=refs)
print(f"Answerable-only QA EM: {results['exact_match']:.2f}, F1: {results['f1']:.2f}")
return results
# ββ 8. Main entry ββ
def main():
passages, embedder, reranker, index, qa_pipe = setup_rag()
parser = argparse.ArgumentParser()
parser.add_argument(
"--eval", action="store_true",
help="Run retrieval/QA evaluations on SQuAD instead of launching the demo"
)
args = parser.parse_args()
if args.eval:
squad = load_dataset("rajpurkar/squad_v2", split="validation")
retrieval_recall(squad, passages, embedder, reranker, index, k=20, rerank_k=5, num_samples=100)
retrieval_recall_answerable(squad, passages, embedder, reranker, index, k=20, rerank_k=5, num_samples=100)
qa_eval_answerable(squad, passages, embedder, reranker, index, qa_pipe, k=20, num_samples=100)
else:
demo = gr.Interface(
fn=lambda q: answer_and_contexts(q, passages, embedder, reranker, index, qa_pipe),
inputs=gr.Textbox(lines=1, placeholder="Ask me anythingβ¦", label="Question"),
outputs=[gr.Textbox(label="Answer"), gr.Textbox(label="Contexts")],
title="π RAG QA Demo",
description="Retrieval-Augmented QA with threshold and context preview",
examples=[
"When was Abraham Lincoln inaugurated?",
"What is the capital of France?",
"Who wrote '1984'?"
],
allow_flagging="never",
)
demo.launch()
if __name__ == "__main__":
main()
|