File size: 14,367 Bytes
815b0dc 936d8d9 815b0dc 936d8d9 815b0dc 1094cbb 815b0dc 936d8d9 815b0dc 2ff74ac 815b0dc 1094cbb 815b0dc 936d8d9 815b0dc 936d8d9 815b0dc 936d8d9 815b0dc 2f00a93 815b0dc 2f00a93 936d8d9 815b0dc 2f00a93 936d8d9 815b0dc 936d8d9 815b0dc 2ca97e8 815b0dc df36232 936d8d9 df36232 936d8d9 df36232 936d8d9 df36232 815b0dc 2f00a93 936d8d9 815b0dc 936d8d9 815b0dc 936d8d9 815b0dc 936d8d9 815b0dc 2f00a93 815b0dc 2f00a93 936d8d9 815b0dc 936d8d9 815b0dc f6ae029 d812604 f6ae029 2f00a93 936d8d9 f6ae029 936d8d9 f6ae029 936d8d9 f6ae029 936d8d9 f6ae029 2f00a93 f6ae029 815b0dc 936d8d9 815b0dc ac74837 815b0dc ac74837 53034cd ac74837 53034cd ac74837 48a5e54 ac74837 48a5e54 ac74837 48a5e54 53034cd ac74837 53034cd 48a5e54 ac74837 48a5e54 ac74837 48a5e54 ac74837 48a5e54 53034cd 48a5e54 ac74837 48a5e54 ac74837 48a5e54 ac74837 48a5e54 ac74837 815b0dc 1873be0 815b0dc 1873be0 815b0dc ac74837 815b0dc 936d8d9 815b0dc 1873be0 815b0dc 936d8d9 1094cbb 936d8d9 815b0dc 1873be0 815b0dc 1094cbb 815b0dc 936d8d9 815b0dc 936d8d9 815b0dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
import io
import json
import uuid
from dataclasses import dataclass
from datetime import datetime
import pandas as pd
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.utils._errors import EntryNotFoundError
from loguru import logger
from .errors import AuthenticationError, PastDeadlineError, SubmissionError, SubmissionLimitError
from .utils import user_authentication
@dataclass
class Submissions:
competition_id: str
submission_limit: str
end_date: datetime
token: str
def __post_init__(self):
self.public_sub_columns = [
"datetime",
"submission_id",
"public_score",
"submission_comment",
"selected",
"status",
]
self.private_sub_columns = [
"datetime",
"submission_id",
"public_score",
"private_score",
"submission_comment",
"selected",
"status",
]
def _verify_submission(self, bytes_data):
return True
def _add_new_user(self, user_info):
api = HfApi(token=self.token)
user_submission_info = {}
user_submission_info["name"] = user_info["name"]
user_submission_info["id"] = user_info["id"]
user_submission_info["submissions"] = []
# convert user_submission_info to BufferedIOBase file object
user_submission_info_json = json.dumps(user_submission_info, indent=4)
user_submission_info_json_bytes = user_submission_info_json.encode("utf-8")
user_submission_info_json_buffer = io.BytesIO(user_submission_info_json_bytes)
api.upload_file(
path_or_fileobj=user_submission_info_json_buffer,
path_in_repo=f"submission_info/{user_info['id']}.json",
repo_id=self.competition_id,
repo_type="dataset",
)
def _check_user_submission_limit(self, user_info):
user_id = user_info["id"]
try:
user_fname = hf_hub_download(
repo_id=self.competition_id,
filename=f"submission_info/{user_id}.json",
token=self.token,
repo_type="dataset",
)
except EntryNotFoundError:
self._add_new_user(user_info)
user_fname = hf_hub_download(
repo_id=self.competition_id,
filename=f"submission_info/{user_id}.json",
token=self.token,
repo_type="dataset",
)
except Exception as e:
logger.error(e)
raise Exception("Hugging Face Hub is unreachable, please try again later.")
with open(user_fname, "r", encoding="utf-8") as f:
user_submission_info = json.load(f)
todays_date = datetime.now().strftime("%Y-%m-%d")
if len(user_submission_info["submissions"]) == 0:
user_submission_info["submissions"] = []
# count the number of times user has submitted today
todays_submissions = 0
for sub in user_submission_info["submissions"]:
if sub["date"] == todays_date:
todays_submissions += 1
if todays_submissions >= self.submission_limit:
return False
return True
def _submissions_today(self, user_info):
user_id = user_info["id"]
try:
user_fname = hf_hub_download(
repo_id=self.competition_id,
filename=f"submission_info/{user_id}.json",
token=self.token,
repo_type="dataset",
)
except EntryNotFoundError:
self._add_new_user(user_info)
user_fname = hf_hub_download(
repo_id=self.competition_id,
filename=f"submission_info/{user_id}.json",
token=self.token,
repo_type="dataset",
)
except Exception as e:
logger.error(e)
raise Exception("Hugging Face Hub is unreachable, please try again later.")
with open(user_fname, "r", encoding="utf-8") as f:
user_submission_info = json.load(f)
todays_date = datetime.now().strftime("%Y-%m-%d")
if len(user_submission_info["submissions"]) == 0:
user_submission_info["submissions"] = []
# count the number of times user has submitted today
todays_submissions = 0
for sub in user_submission_info["submissions"]:
if sub["date"] == todays_date:
todays_submissions += 1
return todays_submissions
def _increment_submissions(self, user_id, submission_id, submission_comment):
user_fname = hf_hub_download(
repo_id=self.competition_id,
filename=f"submission_info/{user_id}.json",
token=self.token,
repo_type="dataset",
)
with open(user_fname, "r", encoding="utf-8") as f:
user_submission_info = json.load(f)
todays_date = datetime.now().strftime("%Y-%m-%d")
current_time = datetime.now().strftime("%H:%M:%S")
# here goes all the default stuff for submission
user_submission_info["submissions"].append(
{
"date": todays_date,
"time": current_time,
"submission_id": submission_id,
"submission_comment": submission_comment,
"status": "pending",
"selected": False,
"public_score": -1,
"private_score": -1,
}
)
# count the number of times user has submitted today
todays_submissions = 0
for sub in user_submission_info["submissions"]:
if sub["date"] == todays_date:
todays_submissions += 1
# convert user_submission_info to BufferedIOBase file object
user_submission_info_json = json.dumps(user_submission_info, indent=4)
user_submission_info_json_bytes = user_submission_info_json.encode("utf-8")
user_submission_info_json_buffer = io.BytesIO(user_submission_info_json_bytes)
api = HfApi(token=self.token)
api.upload_file(
path_or_fileobj=user_submission_info_json_buffer,
path_in_repo=f"submission_info/{user_id}.json",
repo_id=self.competition_id,
repo_type="dataset",
)
return todays_submissions
def _download_user_subs(self, user_id):
user_fname = hf_hub_download(
repo_id=self.competition_id,
filename=f"submission_info/{user_id}.json",
token=self.token,
repo_type="dataset",
)
with open(user_fname, "r", encoding="utf-8") as f:
user_submission_info = json.load(f)
return user_submission_info["submissions"]
def update_selected_submissions(self, user_token, selected_submission_ids):
current_datetime = datetime.now()
if current_datetime > self.end_date:
raise PastDeadlineError("Competition has ended.")
user_info = self._get_user_info(user_token)
user_id = user_info["id"]
user_fname = hf_hub_download(
repo_id=self.competition_id,
filename=f"submission_info/{user_id}.json",
token=self.token,
repo_type="dataset",
)
with open(user_fname, "r", encoding="utf-8") as f:
user_submission_info = json.load(f)
for sub in user_submission_info["submissions"]:
if sub["submission_id"] in selected_submission_ids:
sub["selected"] = True
else:
sub["selected"] = False
# convert user_submission_info to BufferedIOBase file object
user_submission_info_json = json.dumps(user_submission_info, indent=4)
user_submission_info_json_bytes = user_submission_info_json.encode("utf-8")
user_submission_info_json_buffer = io.BytesIO(user_submission_info_json_bytes)
api = HfApi(token=self.token)
api.upload_file(
path_or_fileobj=user_submission_info_json_buffer,
path_in_repo=f"submission_info/{user_id}.json",
repo_id=self.competition_id,
repo_type="dataset",
)
def _get_user_subs(self, user_info, private=False):
# get user submissions
user_id = user_info["id"]
try:
user_submissions = self._download_user_subs(user_id)
except EntryNotFoundError:
logger.warning("No submissions found for user")
return pd.DataFrame(), pd.DataFrame()
submissions_df = pd.DataFrame(user_submissions)
if not private:
submissions_df = submissions_df.drop(columns=["private_score"])
submissions_df = submissions_df[self.public_sub_columns]
else:
submissions_df = submissions_df[self.private_sub_columns]
if not private:
failed_submissions = submissions_df[
(submissions_df["status"].isin(["failed", "error"])) | (submissions_df["public_score"] == -1)
]
successful_submissions = submissions_df[
~submissions_df["status"].isin(["failed", "error"]) & (submissions_df["public_score"] != -1)
]
else:
failed_submissions = submissions_df[
(submissions_df["status"].isin(["failed", "error"]))
| (submissions_df["private_score"] == -1)
| (submissions_df["public_score"] == -1)
]
successful_submissions = submissions_df[
~submissions_df["status"].isin(["failed", "error"])
& (submissions_df["private_score"] != -1)
& (submissions_df["public_score"] != -1)
]
failed_submissions = failed_submissions.reset_index(drop=True)
successful_submissions = successful_submissions.reset_index(drop=True)
if not private:
first_submission = successful_submissions.iloc[0]
if isinstance(first_submission["public_score"], dict):
# split the public score dict into columns
temp_scores_df = successful_submissions["public_score"].apply(pd.Series)
temp_scores_df = temp_scores_df.rename(columns=lambda x: "public_" + str(x))
successful_submissions = pd.concat(
[
successful_submissions.drop(["public_score"], axis=1),
temp_scores_df,
],
axis=1,
)
else:
first_submission = successful_submissions.iloc[0]
if isinstance(first_submission["private_score"], dict):
# split the public score dict into columns
temp_scores_df = successful_submissions["private_score"].apply(pd.Series)
temp_scores_df = temp_scores_df.rename(columns=lambda x: "private_" + str(x))
successful_submissions = pd.concat(
[
successful_submissions.drop(["private_score"], axis=1),
temp_scores_df,
],
axis=1,
)
if isinstance(first_submission["public_score"], dict):
# split the public score dict into columns
temp_scores_df = successful_submissions["public_score"].apply(pd.Series)
temp_scores_df = temp_scores_df.rename(columns=lambda x: "public_" + str(x))
successful_submissions = pd.concat(
[
successful_submissions.drop(["public_score"], axis=1),
temp_scores_df,
],
axis=1,
)
return successful_submissions, failed_submissions
def _get_user_info(self, user_token):
user_info = user_authentication(token=user_token)
if "error" in user_info:
raise AuthenticationError("Invalid token")
if user_info["emailVerified"] is False:
raise AuthenticationError("Please verify your email on Hugging Face Hub")
return user_info
def my_submissions(self, user_token):
user_info = self._get_user_info(user_token)
current_date_time = datetime.now()
private = False
if current_date_time >= self.end_date:
private = True
success_subs, failed_subs = self._get_user_subs(user_info, private=private)
return success_subs, failed_subs
def new_submission(self, user_token, uploaded_file, submission_comment):
# verify token
user_info = self._get_user_info(user_token)
# check if user can submit to the competition
if self._check_user_submission_limit(user_info) is False:
raise SubmissionLimitError("Submission limit reached")
logger.info(type(uploaded_file))
bytes_data = uploaded_file.file.read()
# verify file is valid
if not self._verify_submission(bytes_data):
raise SubmissionError("Invalid submission file")
else:
user_id = user_info["id"]
submission_id = str(uuid.uuid4())
file_extension = uploaded_file.filename.split(".")[-1]
# upload file to hf hub
api = HfApi(token=self.token)
api.upload_file(
path_or_fileobj=bytes_data,
path_in_repo=f"submissions/{user_id}-{submission_id}.{file_extension}",
repo_id=self.competition_id,
repo_type="dataset",
)
# update submission limit
submissions_made = self._increment_submissions(
user_id=user_id,
submission_id=submission_id,
submission_comment="",
)
# TODO: schedule submission for evaluation
# self._create_autotrain_project(
# submission_id=f"{submission_id}",
# competition_id=f"{self.competition_id}",
# user_id=user_id,
# competition_type="generic",
# )
remaining_submissions = self.submission_limit - submissions_made
return remaining_submissions
|