File size: 18,452 Bytes
815b0dc
 
 
 
 
 
 
34121ca
815b0dc
 
 
936d8d9
 
815b0dc
 
 
 
 
a2fa160
815b0dc
abe3598
815b0dc
936d8d9
815b0dc
 
 
1094cbb
815b0dc
 
936d8d9
815b0dc
2ff74ac
815b0dc
 
1094cbb
815b0dc
 
 
936d8d9
815b0dc
 
 
 
 
 
 
a2fa160
936d8d9
a2fa160
 
 
 
 
 
815b0dc
 
a2fa160
 
815b0dc
 
 
 
a2fa160
815b0dc
a2fa160
815b0dc
a2fa160
936d8d9
815b0dc
 
 
a2fa160
 
815b0dc
a2fa160
936d8d9
815b0dc
 
 
 
 
 
a2fa160
 
815b0dc
42c2745
a2fa160
 
815b0dc
 
 
a2fa160
 
 
 
815b0dc
 
 
 
 
a2fa160
df36232
a2fa160
df36232
a2fa160
936d8d9
df36232
 
 
a2fa160
 
df36232
a2fa160
936d8d9
df36232
 
 
 
 
 
a2fa160
 
df36232
42c2745
a2fa160
 
df36232
 
 
a2fa160
 
 
 
df36232
 
 
34121ca
 
 
 
 
 
 
 
 
 
a2fa160
 
34121ca
 
a2fa160
815b0dc
a2fa160
936d8d9
815b0dc
 
a2fa160
 
42c2745
815b0dc
 
a2fa160
815b0dc
a2fa160
815b0dc
 
a2fa160
34121ca
a2fa160
815b0dc
 
 
 
34121ca
815b0dc
 
 
 
42c2745
a2fa160
 
 
 
815b0dc
 
a2fa160
 
 
936d8d9
815b0dc
a2fa160
 
815b0dc
 
 
 
 
a2fa160
 
815b0dc
a2fa160
936d8d9
815b0dc
 
a2fa160
 
 
815b0dc
f6ae029
42c2745
d812604
 
 
f6ae029
42c2745
f6ae029
a2fa160
f6ae029
a2fa160
936d8d9
f6ae029
 
a2fa160
 
f6ae029
a2fa160
f6ae029
 
 
 
 
a2fa160
 
 
936d8d9
f6ae029
a2fa160
 
f6ae029
 
 
 
34121ca
815b0dc
a2fa160
815b0dc
936d8d9
 
815b0dc
a2fa160
ac74837
815b0dc
 
 
 
 
ac74837
 
3b19076
 
ac74837
 
3b19076
 
ac74837
 
 
3b19076
ac74837
 
 
 
3b19076
ac74837
 
 
 
 
53034cd
3b19076
 
 
53034cd
ac74837
53034cd
 
ac74837
48a5e54
ac74837
48a5e54
ac74837
48a5e54
 
 
 
53034cd
ac74837
53034cd
48a5e54
ac74837
48a5e54
ac74837
48a5e54
ac74837
48a5e54
 
 
 
53034cd
 
48a5e54
ac74837
48a5e54
ac74837
48a5e54
ac74837
48a5e54
 
 
 
ac74837
815b0dc
 
 
 
1873be0
815b0dc
 
1873be0
815b0dc
 
 
 
42c2745
815b0dc
 
 
42c2745
34121ca
ac74837
815b0dc
42c2745
 
 
a2fa160
 
 
 
 
 
 
 
 
 
 
 
42c2745
 
 
 
 
 
 
 
 
 
a2fa160
 
 
42c2745
 
 
 
 
 
 
 
a2fa160
 
 
42c2745
 
 
 
 
a2fa160
 
 
 
 
 
 
42c2745
 
 
 
 
 
 
a2fa160
 
936d8d9
815b0dc
 
a2fa160
 
42c2745
815b0dc
a2fa160
 
1873be0
815b0dc
a2fa160
 
 
 
 
936d8d9
1094cbb
815b0dc
936d8d9
815b0dc
 
a2fa160
815b0dc
 
 
 
a2fa160
 
 
 
 
 
34121ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2fa160
 
34121ca
 
 
62f77e4
a2fa160
 
34121ca
 
a2fa160
 
815b0dc
 
a2fa160
 
34121ca
 
815b0dc
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
import io
import json
import uuid
from dataclasses import dataclass
from datetime import datetime

import pandas as pd
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.utils._errors import EntryNotFoundError
from loguru import logger

from .errors import AuthenticationError, PastDeadlineError, SubmissionError, SubmissionLimitError
from .utils import user_authentication


@dataclass
class Submissions:
    competition_id: str
    competition_type: str
    submission_limit: str
    hardware: str
    end_date: datetime
    token: str

    def __post_init__(self):
        self.public_sub_columns = [
            "datetime",
            "submission_id",
            "public_score",
            "submission_comment",
            "selected",
            "status",
        ]
        self.private_sub_columns = [
            "datetime",
            "submission_id",
            "public_score",
            "private_score",
            "submission_comment",
            "selected",
            "status",
        ]

    def _verify_submission(self, bytes_data):
        return True

    def _add_new_team(self, team_id):
        api = HfApi(token=self.token)
        team_submission_info = {}
        team_submission_info["id"] = team_id
        team_submission_info["submissions"] = []
        team_submission_info_json = json.dumps(team_submission_info, indent=4)
        team_submission_info_json_bytes = team_submission_info_json.encode("utf-8")
        team_submission_info_json_buffer = io.BytesIO(team_submission_info_json_bytes)

        api.upload_file(
            path_or_fileobj=team_submission_info_json_buffer,
            path_in_repo=f"submission_info/{team_id}.json",
            repo_id=self.competition_id,
            repo_type="dataset",
        )

    def _check_team_submission_limit(self, team_id):
        try:
            team_fname = hf_hub_download(
                repo_id=self.competition_id,
                filename=f"submission_info/{team_id}.json",
                token=self.token,
                repo_type="dataset",
            )
        except EntryNotFoundError:
            self._add_new_team(team_id)
            team_fname = hf_hub_download(
                repo_id=self.competition_id,
                filename=f"submission_info/{team_id}.json",
                token=self.token,
                repo_type="dataset",
            )
        except Exception as e:
            logger.error(e)
            raise Exception("Hugging Face Hub is unreachable, please try again later.")

        with open(team_fname, "r", encoding="utf-8") as f:
            team_submission_info = json.load(f)

        todays_date = datetime.utcnow().strftime("%Y-%m-%d")
        if len(team_submission_info["submissions"]) == 0:
            team_submission_info["submissions"] = []

        # count the number of times user has submitted today
        todays_submissions = 0
        for sub in team_submission_info["submissions"]:
            submission_datetime = sub["datetime"]
            submission_date = submission_datetime.split(" ")[0]
            if submission_date == todays_date:
                todays_submissions += 1
        if todays_submissions >= self.submission_limit:
            return False
        return True

    def _submissions_today(self, team_id):
        try:
            team_fname = hf_hub_download(
                repo_id=self.competition_id,
                filename=f"submission_info/{team_id}.json",
                token=self.token,
                repo_type="dataset",
            )
        except EntryNotFoundError:
            self._add_new_team(team_id)
            team_fname = hf_hub_download(
                repo_id=self.competition_id,
                filename=f"submission_info/{team_id}.json",
                token=self.token,
                repo_type="dataset",
            )
        except Exception as e:
            logger.error(e)
            raise Exception("Hugging Face Hub is unreachable, please try again later.")

        with open(team_fname, "r", encoding="utf-8") as f:
            team_submission_info = json.load(f)

        todays_date = datetime.utcnow().strftime("%Y-%m-%d")
        if len(team_submission_info["submissions"]) == 0:
            team_submission_info["submissions"] = []

        # count the number of times user has submitted today
        todays_submissions = 0
        for sub in team_submission_info["submissions"]:
            submission_datetime = sub["datetime"]
            submission_date = submission_datetime.split(" ")[0]
            if submission_date == todays_date:
                todays_submissions += 1
        return todays_submissions

    def _increment_submissions(
        self,
        team_id,
        user_id,
        submission_id,
        submission_comment,
        submission_repo=None,
        space_id=None,
        space_status=0,
    ):
        if submission_repo is None:
            submission_repo = ""
        if space_id is None:
            space_id = ""
        team_fname = hf_hub_download(
            repo_id=self.competition_id,
            filename=f"submission_info/{team_id}.json",
            token=self.token,
            repo_type="dataset",
        )
        with open(team_fname, "r", encoding="utf-8") as f:
            team_submission_info = json.load(f)
        datetime_now = datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")

        # here goes all the default stuff for submission
        team_submission_info["submissions"].append(
            {
                "datetime": datetime_now,
                "submission_id": submission_id,
                "submission_comment": submission_comment,
                "submission_repo": submission_repo,
                "space_id": space_id,
                "submitted_by": user_id,
                "status": "pending",
                "selected": False,
                "public_score": -1,
                "private_score": -1,
                "space_status": space_status,
            }
        )
        # count the number of times user has submitted today
        todays_submissions = 0
        todays_date = datetime.utcnow().strftime("%Y-%m-%d")
        for sub in team_submission_info["submissions"]:
            submission_datetime = sub["datetime"]
            submission_date = submission_datetime.split(" ")[0]
            if submission_date == todays_date:
                todays_submissions += 1

        team_submission_info_json = json.dumps(team_submission_info, indent=4)
        team_submission_info_json_bytes = team_submission_info_json.encode("utf-8")
        team_submission_info_json_buffer = io.BytesIO(team_submission_info_json_bytes)
        api = HfApi(token=self.token)
        api.upload_file(
            path_or_fileobj=team_submission_info_json_buffer,
            path_in_repo=f"submission_info/{team_id}.json",
            repo_id=self.competition_id,
            repo_type="dataset",
        )
        return todays_submissions

    def _download_team_subs(self, team_id):
        team_fname = hf_hub_download(
            repo_id=self.competition_id,
            filename=f"submission_info/{team_id}.json",
            token=self.token,
            repo_type="dataset",
        )
        with open(team_fname, "r", encoding="utf-8") as f:
            team_submission_info = json.load(f)
        return team_submission_info["submissions"]

    def update_selected_submissions(self, user_token, selected_submission_ids):
        current_datetime = datetime.utcnow()
        if current_datetime > self.end_date:
            raise PastDeadlineError("Competition has ended.")

        user_info = self._get_user_info(user_token)
        team_id = self._get_team_id(user_info)

        team_fname = hf_hub_download(
            repo_id=self.competition_id,
            filename=f"submission_info/{team_id}.json",
            token=self.token,
            repo_type="dataset",
        )
        with open(team_fname, "r", encoding="utf-8") as f:
            team_submission_info = json.load(f)

        for sub in team_submission_info["submissions"]:
            if sub["submission_id"] in selected_submission_ids:
                sub["selected"] = True
            else:
                sub["selected"] = False

        team_submission_info_json = json.dumps(team_submission_info, indent=4)
        team_submission_info_json_bytes = team_submission_info_json.encode("utf-8")
        team_submission_info_json_buffer = io.BytesIO(team_submission_info_json_bytes)
        api = HfApi(token=self.token)
        api.upload_file(
            path_or_fileobj=team_submission_info_json_buffer,
            path_in_repo=f"submission_info/{team_id}.json",
            repo_id=self.competition_id,
            repo_type="dataset",
        )

    def _get_team_subs(self, team_id, private=False):
        try:
            team_submissions = self._download_team_subs(team_id)
        except EntryNotFoundError:
            logger.warning("No submissions found for user")
            return pd.DataFrame(), pd.DataFrame()

        submissions_df = pd.DataFrame(team_submissions)

        if not private:
            submissions_df = submissions_df.drop(columns=["private_score"])
            submissions_df = submissions_df[self.public_sub_columns]
        else:
            submissions_df = submissions_df[self.private_sub_columns]
        if not private:
            failed_submissions = submissions_df[
                (submissions_df["status"].isin(["failed", "error", "pending", "processing"]))
                | (submissions_df["public_score"] == -1)
            ]
            successful_submissions = submissions_df[
                ~submissions_df["status"].isin(["failed", "error", "pending", "processing"])
                & (submissions_df["public_score"] != -1)
            ]
        else:
            failed_submissions = submissions_df[
                (submissions_df["status"].isin(["failed", "error", "pending", "processing"]))
                | (submissions_df["private_score"] == -1)
                | (submissions_df["public_score"] == -1)
            ]
            successful_submissions = submissions_df[
                ~submissions_df["status"].isin(["failed", "error", "pending", "processing"])
                & (submissions_df["private_score"] != -1)
                & (submissions_df["public_score"] != -1)
            ]
        failed_submissions = failed_submissions.reset_index(drop=True)
        successful_submissions = successful_submissions.reset_index(drop=True)

        if len(successful_submissions) == 0:
            return successful_submissions, failed_submissions

        if not private:
            first_submission = successful_submissions.iloc[0]
            if isinstance(first_submission["public_score"], dict):
                # split the public score dict into columns
                temp_scores_df = successful_submissions["public_score"].apply(pd.Series)
                temp_scores_df = temp_scores_df.rename(columns=lambda x: "public_" + str(x))
                successful_submissions = pd.concat(
                    [
                        successful_submissions.drop(["public_score"], axis=1),
                        temp_scores_df,
                    ],
                    axis=1,
                )
        else:
            first_submission = successful_submissions.iloc[0]
            if isinstance(first_submission["private_score"], dict):
                # split the public score dict into columns
                temp_scores_df = successful_submissions["private_score"].apply(pd.Series)
                temp_scores_df = temp_scores_df.rename(columns=lambda x: "private_" + str(x))
                successful_submissions = pd.concat(
                    [
                        successful_submissions.drop(["private_score"], axis=1),
                        temp_scores_df,
                    ],
                    axis=1,
                )

            if isinstance(first_submission["public_score"], dict):
                # split the public score dict into columns
                temp_scores_df = successful_submissions["public_score"].apply(pd.Series)
                temp_scores_df = temp_scores_df.rename(columns=lambda x: "public_" + str(x))
                successful_submissions = pd.concat(
                    [
                        successful_submissions.drop(["public_score"], axis=1),
                        temp_scores_df,
                    ],
                    axis=1,
                )
        return successful_submissions, failed_submissions

    def _get_user_info(self, user_token):
        user_info = user_authentication(token=user_token)
        if "error" in user_info:
            raise AuthenticationError("Invalid token")

        if user_info["emailVerified"] is False:
            raise AuthenticationError("Please verify your email on Hugging Face Hub")
        return user_info

    def my_submissions(self, user_token):
        user_info = self._get_user_info(user_token)
        current_date_time = datetime.utcnow()
        private = False
        if current_date_time >= self.end_date:
            private = True
        team_id = self._get_team_id(user_info)
        success_subs, failed_subs = self._get_team_subs(team_id, private=private)
        return success_subs, failed_subs

    def _get_team_id(self, user_info):
        user_id = user_info["id"]
        user_name = user_info["name"]
        user_team = hf_hub_download(
            repo_id=self.competition_id,
            filename="user_team.json",
            token=self.token,
            repo_type="dataset",
        )
        with open(user_team, "r", encoding="utf-8") as f:
            user_team = json.load(f)

        if user_id in user_team:
            return user_team[user_id]

        team_metadata = hf_hub_download(
            repo_id=self.competition_id,
            filename="teams.json",
            token=self.token,
            repo_type="dataset",
        )

        with open(team_metadata, "r", encoding="utf-8") as f:
            team_metadata = json.load(f)

        # create a new team, if user is not in any team
        team_id = str(uuid.uuid4())
        user_team[user_id] = team_id

        team_metadata[team_id] = {
            "id": team_id,
            "name": user_name,
            "members": [user_id],
            "leader": user_id,
        }

        user_team_json = json.dumps(user_team, indent=4)
        user_team_json_bytes = user_team_json.encode("utf-8")
        user_team_json_buffer = io.BytesIO(user_team_json_bytes)

        team_metadata_json = json.dumps(team_metadata, indent=4)
        team_metadata_json_bytes = team_metadata_json.encode("utf-8")
        team_metadata_json_buffer = io.BytesIO(team_metadata_json_bytes)

        api = HfApi(token=self.token)
        api.upload_file(
            path_or_fileobj=user_team_json_buffer,
            path_in_repo="user_team.json",
            repo_id=self.competition_id,
            repo_type="dataset",
        )
        api.upload_file(
            path_or_fileobj=team_metadata_json_buffer,
            path_in_repo="teams.json",
            repo_id=self.competition_id,
            repo_type="dataset",
        )

        return team_id

    def new_submission(self, user_token, uploaded_file, submission_comment):
        # verify token
        user_info = self._get_user_info(user_token)
        submission_id = str(uuid.uuid4())
        user_id = user_info["id"]
        team_id = self._get_team_id(user_info)

        # check if team can submit to the competition
        if self._check_team_submission_limit(team_id) is False:
            raise SubmissionLimitError("Submission limit reached")

        if self.competition_type == "generic":
            bytes_data = uploaded_file.file.read()
            # verify file is valid
            if not self._verify_submission(bytes_data):
                raise SubmissionError("Invalid submission file")

            file_extension = uploaded_file.filename.split(".")[-1]
            # upload file to hf hub
            api = HfApi(token=self.token)
            api.upload_file(
                path_or_fileobj=bytes_data,
                path_in_repo=f"submissions/{team_id}-{submission_id}.{file_extension}",
                repo_id=self.competition_id,
                repo_type="dataset",
            )
            submissions_made = self._increment_submissions(
                team_id=team_id,
                user_id=user_id,
                submission_id=submission_id,
                submission_comment=submission_comment,
            )
        else:
            # Download the submission repo and upload it to the competition repo
            # submission_repo = snapshot_download(
            #     repo_id=uploaded_file,
            #     local_dir=submission_id,
            #     token=user_token,
            #     repo_type="model",
            # )
            # api = HfApi(token=self.token)
            # competition_user = self.competition_id.split("/")[0]
            # api.create_repo(
            #     repo_id=f"{competition_user}/{submission_id}",
            #     repo_type="model",
            #     private=True,
            # )
            # api.upload_folder(
            #     folder_path=submission_repo,
            #     repo_id=f"{competition_user}/{submission_id}",
            #     repo_type="model",
            # )
            # create barebones submission runner space
            competition_organizer = self.competition_id.split("/")[0]
            space_id = f"{competition_organizer}/comp-{submission_id}"
            api = HfApi(token=self.token)
            api.create_repo(
                repo_id=space_id,
                repo_type="space",
                space_sdk="docker",
                space_hardware=self.hardware,
                private=True,
            )

            api.add_space_secret(repo_id=space_id, key="USER_TOKEN", value=user_token)
            submissions_made = self._increment_submissions(
                team_id=team_id,
                user_id=user_id,
                submission_id=submission_id,
                submission_comment=submission_comment,
                submission_repo=uploaded_file,
                space_id=space_id,
                space_status=0,
            )
        remaining_submissions = self.submission_limit - submissions_made
        return remaining_submissions