File size: 18,452 Bytes
815b0dc 34121ca 815b0dc 936d8d9 815b0dc a2fa160 815b0dc abe3598 815b0dc 936d8d9 815b0dc 1094cbb 815b0dc 936d8d9 815b0dc 2ff74ac 815b0dc 1094cbb 815b0dc 936d8d9 815b0dc a2fa160 936d8d9 a2fa160 815b0dc a2fa160 815b0dc a2fa160 815b0dc a2fa160 815b0dc a2fa160 936d8d9 815b0dc a2fa160 815b0dc a2fa160 936d8d9 815b0dc a2fa160 815b0dc 42c2745 a2fa160 815b0dc a2fa160 815b0dc a2fa160 df36232 a2fa160 df36232 a2fa160 936d8d9 df36232 a2fa160 df36232 a2fa160 936d8d9 df36232 a2fa160 df36232 42c2745 a2fa160 df36232 a2fa160 df36232 34121ca a2fa160 34121ca a2fa160 815b0dc a2fa160 936d8d9 815b0dc a2fa160 42c2745 815b0dc a2fa160 815b0dc a2fa160 815b0dc a2fa160 34121ca a2fa160 815b0dc 34121ca 815b0dc 42c2745 a2fa160 815b0dc a2fa160 936d8d9 815b0dc a2fa160 815b0dc a2fa160 815b0dc a2fa160 936d8d9 815b0dc a2fa160 815b0dc f6ae029 42c2745 d812604 f6ae029 42c2745 f6ae029 a2fa160 f6ae029 a2fa160 936d8d9 f6ae029 a2fa160 f6ae029 a2fa160 f6ae029 a2fa160 936d8d9 f6ae029 a2fa160 f6ae029 34121ca 815b0dc a2fa160 815b0dc 936d8d9 815b0dc a2fa160 ac74837 815b0dc ac74837 3b19076 ac74837 3b19076 ac74837 3b19076 ac74837 3b19076 ac74837 53034cd 3b19076 53034cd ac74837 53034cd ac74837 48a5e54 ac74837 48a5e54 ac74837 48a5e54 53034cd ac74837 53034cd 48a5e54 ac74837 48a5e54 ac74837 48a5e54 ac74837 48a5e54 53034cd 48a5e54 ac74837 48a5e54 ac74837 48a5e54 ac74837 48a5e54 ac74837 815b0dc 1873be0 815b0dc 1873be0 815b0dc 42c2745 815b0dc 42c2745 34121ca ac74837 815b0dc 42c2745 a2fa160 42c2745 a2fa160 42c2745 a2fa160 42c2745 a2fa160 42c2745 a2fa160 936d8d9 815b0dc a2fa160 42c2745 815b0dc a2fa160 1873be0 815b0dc a2fa160 936d8d9 1094cbb 815b0dc 936d8d9 815b0dc a2fa160 815b0dc a2fa160 34121ca a2fa160 34121ca 62f77e4 a2fa160 34121ca a2fa160 815b0dc a2fa160 34121ca 815b0dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
import io
import json
import uuid
from dataclasses import dataclass
from datetime import datetime
import pandas as pd
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.utils._errors import EntryNotFoundError
from loguru import logger
from .errors import AuthenticationError, PastDeadlineError, SubmissionError, SubmissionLimitError
from .utils import user_authentication
@dataclass
class Submissions:
competition_id: str
competition_type: str
submission_limit: str
hardware: str
end_date: datetime
token: str
def __post_init__(self):
self.public_sub_columns = [
"datetime",
"submission_id",
"public_score",
"submission_comment",
"selected",
"status",
]
self.private_sub_columns = [
"datetime",
"submission_id",
"public_score",
"private_score",
"submission_comment",
"selected",
"status",
]
def _verify_submission(self, bytes_data):
return True
def _add_new_team(self, team_id):
api = HfApi(token=self.token)
team_submission_info = {}
team_submission_info["id"] = team_id
team_submission_info["submissions"] = []
team_submission_info_json = json.dumps(team_submission_info, indent=4)
team_submission_info_json_bytes = team_submission_info_json.encode("utf-8")
team_submission_info_json_buffer = io.BytesIO(team_submission_info_json_bytes)
api.upload_file(
path_or_fileobj=team_submission_info_json_buffer,
path_in_repo=f"submission_info/{team_id}.json",
repo_id=self.competition_id,
repo_type="dataset",
)
def _check_team_submission_limit(self, team_id):
try:
team_fname = hf_hub_download(
repo_id=self.competition_id,
filename=f"submission_info/{team_id}.json",
token=self.token,
repo_type="dataset",
)
except EntryNotFoundError:
self._add_new_team(team_id)
team_fname = hf_hub_download(
repo_id=self.competition_id,
filename=f"submission_info/{team_id}.json",
token=self.token,
repo_type="dataset",
)
except Exception as e:
logger.error(e)
raise Exception("Hugging Face Hub is unreachable, please try again later.")
with open(team_fname, "r", encoding="utf-8") as f:
team_submission_info = json.load(f)
todays_date = datetime.utcnow().strftime("%Y-%m-%d")
if len(team_submission_info["submissions"]) == 0:
team_submission_info["submissions"] = []
# count the number of times user has submitted today
todays_submissions = 0
for sub in team_submission_info["submissions"]:
submission_datetime = sub["datetime"]
submission_date = submission_datetime.split(" ")[0]
if submission_date == todays_date:
todays_submissions += 1
if todays_submissions >= self.submission_limit:
return False
return True
def _submissions_today(self, team_id):
try:
team_fname = hf_hub_download(
repo_id=self.competition_id,
filename=f"submission_info/{team_id}.json",
token=self.token,
repo_type="dataset",
)
except EntryNotFoundError:
self._add_new_team(team_id)
team_fname = hf_hub_download(
repo_id=self.competition_id,
filename=f"submission_info/{team_id}.json",
token=self.token,
repo_type="dataset",
)
except Exception as e:
logger.error(e)
raise Exception("Hugging Face Hub is unreachable, please try again later.")
with open(team_fname, "r", encoding="utf-8") as f:
team_submission_info = json.load(f)
todays_date = datetime.utcnow().strftime("%Y-%m-%d")
if len(team_submission_info["submissions"]) == 0:
team_submission_info["submissions"] = []
# count the number of times user has submitted today
todays_submissions = 0
for sub in team_submission_info["submissions"]:
submission_datetime = sub["datetime"]
submission_date = submission_datetime.split(" ")[0]
if submission_date == todays_date:
todays_submissions += 1
return todays_submissions
def _increment_submissions(
self,
team_id,
user_id,
submission_id,
submission_comment,
submission_repo=None,
space_id=None,
space_status=0,
):
if submission_repo is None:
submission_repo = ""
if space_id is None:
space_id = ""
team_fname = hf_hub_download(
repo_id=self.competition_id,
filename=f"submission_info/{team_id}.json",
token=self.token,
repo_type="dataset",
)
with open(team_fname, "r", encoding="utf-8") as f:
team_submission_info = json.load(f)
datetime_now = datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")
# here goes all the default stuff for submission
team_submission_info["submissions"].append(
{
"datetime": datetime_now,
"submission_id": submission_id,
"submission_comment": submission_comment,
"submission_repo": submission_repo,
"space_id": space_id,
"submitted_by": user_id,
"status": "pending",
"selected": False,
"public_score": -1,
"private_score": -1,
"space_status": space_status,
}
)
# count the number of times user has submitted today
todays_submissions = 0
todays_date = datetime.utcnow().strftime("%Y-%m-%d")
for sub in team_submission_info["submissions"]:
submission_datetime = sub["datetime"]
submission_date = submission_datetime.split(" ")[0]
if submission_date == todays_date:
todays_submissions += 1
team_submission_info_json = json.dumps(team_submission_info, indent=4)
team_submission_info_json_bytes = team_submission_info_json.encode("utf-8")
team_submission_info_json_buffer = io.BytesIO(team_submission_info_json_bytes)
api = HfApi(token=self.token)
api.upload_file(
path_or_fileobj=team_submission_info_json_buffer,
path_in_repo=f"submission_info/{team_id}.json",
repo_id=self.competition_id,
repo_type="dataset",
)
return todays_submissions
def _download_team_subs(self, team_id):
team_fname = hf_hub_download(
repo_id=self.competition_id,
filename=f"submission_info/{team_id}.json",
token=self.token,
repo_type="dataset",
)
with open(team_fname, "r", encoding="utf-8") as f:
team_submission_info = json.load(f)
return team_submission_info["submissions"]
def update_selected_submissions(self, user_token, selected_submission_ids):
current_datetime = datetime.utcnow()
if current_datetime > self.end_date:
raise PastDeadlineError("Competition has ended.")
user_info = self._get_user_info(user_token)
team_id = self._get_team_id(user_info)
team_fname = hf_hub_download(
repo_id=self.competition_id,
filename=f"submission_info/{team_id}.json",
token=self.token,
repo_type="dataset",
)
with open(team_fname, "r", encoding="utf-8") as f:
team_submission_info = json.load(f)
for sub in team_submission_info["submissions"]:
if sub["submission_id"] in selected_submission_ids:
sub["selected"] = True
else:
sub["selected"] = False
team_submission_info_json = json.dumps(team_submission_info, indent=4)
team_submission_info_json_bytes = team_submission_info_json.encode("utf-8")
team_submission_info_json_buffer = io.BytesIO(team_submission_info_json_bytes)
api = HfApi(token=self.token)
api.upload_file(
path_or_fileobj=team_submission_info_json_buffer,
path_in_repo=f"submission_info/{team_id}.json",
repo_id=self.competition_id,
repo_type="dataset",
)
def _get_team_subs(self, team_id, private=False):
try:
team_submissions = self._download_team_subs(team_id)
except EntryNotFoundError:
logger.warning("No submissions found for user")
return pd.DataFrame(), pd.DataFrame()
submissions_df = pd.DataFrame(team_submissions)
if not private:
submissions_df = submissions_df.drop(columns=["private_score"])
submissions_df = submissions_df[self.public_sub_columns]
else:
submissions_df = submissions_df[self.private_sub_columns]
if not private:
failed_submissions = submissions_df[
(submissions_df["status"].isin(["failed", "error", "pending", "processing"]))
| (submissions_df["public_score"] == -1)
]
successful_submissions = submissions_df[
~submissions_df["status"].isin(["failed", "error", "pending", "processing"])
& (submissions_df["public_score"] != -1)
]
else:
failed_submissions = submissions_df[
(submissions_df["status"].isin(["failed", "error", "pending", "processing"]))
| (submissions_df["private_score"] == -1)
| (submissions_df["public_score"] == -1)
]
successful_submissions = submissions_df[
~submissions_df["status"].isin(["failed", "error", "pending", "processing"])
& (submissions_df["private_score"] != -1)
& (submissions_df["public_score"] != -1)
]
failed_submissions = failed_submissions.reset_index(drop=True)
successful_submissions = successful_submissions.reset_index(drop=True)
if len(successful_submissions) == 0:
return successful_submissions, failed_submissions
if not private:
first_submission = successful_submissions.iloc[0]
if isinstance(first_submission["public_score"], dict):
# split the public score dict into columns
temp_scores_df = successful_submissions["public_score"].apply(pd.Series)
temp_scores_df = temp_scores_df.rename(columns=lambda x: "public_" + str(x))
successful_submissions = pd.concat(
[
successful_submissions.drop(["public_score"], axis=1),
temp_scores_df,
],
axis=1,
)
else:
first_submission = successful_submissions.iloc[0]
if isinstance(first_submission["private_score"], dict):
# split the public score dict into columns
temp_scores_df = successful_submissions["private_score"].apply(pd.Series)
temp_scores_df = temp_scores_df.rename(columns=lambda x: "private_" + str(x))
successful_submissions = pd.concat(
[
successful_submissions.drop(["private_score"], axis=1),
temp_scores_df,
],
axis=1,
)
if isinstance(first_submission["public_score"], dict):
# split the public score dict into columns
temp_scores_df = successful_submissions["public_score"].apply(pd.Series)
temp_scores_df = temp_scores_df.rename(columns=lambda x: "public_" + str(x))
successful_submissions = pd.concat(
[
successful_submissions.drop(["public_score"], axis=1),
temp_scores_df,
],
axis=1,
)
return successful_submissions, failed_submissions
def _get_user_info(self, user_token):
user_info = user_authentication(token=user_token)
if "error" in user_info:
raise AuthenticationError("Invalid token")
if user_info["emailVerified"] is False:
raise AuthenticationError("Please verify your email on Hugging Face Hub")
return user_info
def my_submissions(self, user_token):
user_info = self._get_user_info(user_token)
current_date_time = datetime.utcnow()
private = False
if current_date_time >= self.end_date:
private = True
team_id = self._get_team_id(user_info)
success_subs, failed_subs = self._get_team_subs(team_id, private=private)
return success_subs, failed_subs
def _get_team_id(self, user_info):
user_id = user_info["id"]
user_name = user_info["name"]
user_team = hf_hub_download(
repo_id=self.competition_id,
filename="user_team.json",
token=self.token,
repo_type="dataset",
)
with open(user_team, "r", encoding="utf-8") as f:
user_team = json.load(f)
if user_id in user_team:
return user_team[user_id]
team_metadata = hf_hub_download(
repo_id=self.competition_id,
filename="teams.json",
token=self.token,
repo_type="dataset",
)
with open(team_metadata, "r", encoding="utf-8") as f:
team_metadata = json.load(f)
# create a new team, if user is not in any team
team_id = str(uuid.uuid4())
user_team[user_id] = team_id
team_metadata[team_id] = {
"id": team_id,
"name": user_name,
"members": [user_id],
"leader": user_id,
}
user_team_json = json.dumps(user_team, indent=4)
user_team_json_bytes = user_team_json.encode("utf-8")
user_team_json_buffer = io.BytesIO(user_team_json_bytes)
team_metadata_json = json.dumps(team_metadata, indent=4)
team_metadata_json_bytes = team_metadata_json.encode("utf-8")
team_metadata_json_buffer = io.BytesIO(team_metadata_json_bytes)
api = HfApi(token=self.token)
api.upload_file(
path_or_fileobj=user_team_json_buffer,
path_in_repo="user_team.json",
repo_id=self.competition_id,
repo_type="dataset",
)
api.upload_file(
path_or_fileobj=team_metadata_json_buffer,
path_in_repo="teams.json",
repo_id=self.competition_id,
repo_type="dataset",
)
return team_id
def new_submission(self, user_token, uploaded_file, submission_comment):
# verify token
user_info = self._get_user_info(user_token)
submission_id = str(uuid.uuid4())
user_id = user_info["id"]
team_id = self._get_team_id(user_info)
# check if team can submit to the competition
if self._check_team_submission_limit(team_id) is False:
raise SubmissionLimitError("Submission limit reached")
if self.competition_type == "generic":
bytes_data = uploaded_file.file.read()
# verify file is valid
if not self._verify_submission(bytes_data):
raise SubmissionError("Invalid submission file")
file_extension = uploaded_file.filename.split(".")[-1]
# upload file to hf hub
api = HfApi(token=self.token)
api.upload_file(
path_or_fileobj=bytes_data,
path_in_repo=f"submissions/{team_id}-{submission_id}.{file_extension}",
repo_id=self.competition_id,
repo_type="dataset",
)
submissions_made = self._increment_submissions(
team_id=team_id,
user_id=user_id,
submission_id=submission_id,
submission_comment=submission_comment,
)
else:
# Download the submission repo and upload it to the competition repo
# submission_repo = snapshot_download(
# repo_id=uploaded_file,
# local_dir=submission_id,
# token=user_token,
# repo_type="model",
# )
# api = HfApi(token=self.token)
# competition_user = self.competition_id.split("/")[0]
# api.create_repo(
# repo_id=f"{competition_user}/{submission_id}",
# repo_type="model",
# private=True,
# )
# api.upload_folder(
# folder_path=submission_repo,
# repo_id=f"{competition_user}/{submission_id}",
# repo_type="model",
# )
# create barebones submission runner space
competition_organizer = self.competition_id.split("/")[0]
space_id = f"{competition_organizer}/comp-{submission_id}"
api = HfApi(token=self.token)
api.create_repo(
repo_id=space_id,
repo_type="space",
space_sdk="docker",
space_hardware=self.hardware,
private=True,
)
api.add_space_secret(repo_id=space_id, key="USER_TOKEN", value=user_token)
submissions_made = self._increment_submissions(
team_id=team_id,
user_id=user_id,
submission_id=submission_id,
submission_comment=submission_comment,
submission_repo=uploaded_file,
space_id=space_id,
space_status=0,
)
remaining_submissions = self.submission_limit - submissions_made
return remaining_submissions
|