ZIP / models /ebc /vit.py
Yiming-M's picture
2025-07-31 22:05 πŸš€
a5dc50a
raw
history blame
11.7 kB
import torch
from torch import nn, Tensor
import timm
from einops import rearrange
import torch.nn.functional as F
import math
from typing import Optional, Tuple
from ..utils import ConvUpsample, ConvDownsample, _get_activation, _get_norm_layer, ConvRefine
supported_vit_backbones = [
# Tiny
"vit_tiny_patch16_224", "vit_tiny_patch16_384",
# Small
"vit_small_patch8_224",
"vit_small_patch16_224", "vit_small_patch16_384",
"vit_small_patch32_224", "vit_small_patch32_384",
# Base
"vit_base_patch8_224",
"vit_base_patch16_224", "vit_base_patch16_384",
"vit_base_patch32_224", "vit_base_patch32_384",
# Large
"vit_large_patch16_224", "vit_large_patch16_384",
"vit_large_patch32_224", "vit_large_patch32_384",
# Huge
"vit_huge_patch14_224",
]
refiner_channels = {
"vit_tiny_patch16_224": 192,
"vit_tiny_patch16_384": 192,
"vit_small_patch8_224": 384,
"vit_small_patch16_224": 384,
"vit_small_patch16_384": 384,
"vit_small_patch32_224": 384,
"vit_small_patch32_384": 384,
"vit_base_patch8_224": 768,
"vit_base_patch16_224": 768,
"vit_base_patch16_384": 768,
"vit_base_patch32_224": 768,
"vit_base_patch32_384": 768,
"vit_large_patch16_224": 1024,
"vit_large_patch16_384": 1024,
"vit_large_patch32_224": 1024,
"vit_large_patch32_384": 1024,
}
refiner_groups = {
"vit_tiny_patch16_224": 1,
"vit_tiny_patch16_384": 1,
"vit_small_patch8_224": 1,
"vit_small_patch16_224": 1,
"vit_small_patch16_384": 1,
"vit_small_patch32_224": 1,
"vit_small_patch32_384": 1,
"vit_base_patch8_224": 1,
"vit_base_patch16_224": 1,
"vit_base_patch16_384": 1,
"vit_base_patch32_224": 1,
"vit_base_patch32_384": 1,
"vit_large_patch16_224": 1,
"vit_large_patch16_384": 1,
"vit_large_patch32_224": 1,
"vit_large_patch32_384": 1,
}
class ViT(nn.Module):
def __init__(
self,
model_name: str,
block_size: Optional[int] = None,
num_vpt: int = 32,
vpt_drop: float = 0.0,
input_size: Optional[Tuple[int, int]] = None,
norm: str = "none",
act: str = "none"
) -> None:
super().__init__()
assert model_name in supported_vit_backbones, f"Model {model_name} not supported"
assert num_vpt >= 0, f"Number of VPT tokens should be greater than 0, but got {num_vpt}."
self.model_name = model_name
self.num_vpt = num_vpt
self.vpt_drop = vpt_drop
# model = timm.create_model(model_name, pretrained=True)
model = timm.create_model(model_name, pretrained=False)
self.input_size = input_size if input_size is not None else model.patch_embed.img_size
self.pretrain_size = model.patch_embed.img_size
self.patch_size = model.patch_embed.patch_size
if self.patch_size[0] in [8, 16, 32]:
assert block_size is None or block_size in [8, 16, 32], f"Block size should be one of [8, 16, 32], but got {block_size}."
else: # patch_size == 14
assert block_size is None or block_size in [7, 14, 28], f"Block size should be one of [7, 14, 28], but got {block_size}."
self.num_layers = len(model.blocks)
self.embed_dim = model.cls_token.shape[-1]
if self.num_vpt > 0: # Use visual prompt tuning so freeze the backbone
for param in model.parameters():
param.requires_grad = False
# Setup VPT tokens
val = math.sqrt(6. / float(3 * self.patch_size[0] + self.embed_dim))
for idx in range(self.num_layers):
setattr(self, f"vpt_{idx}", nn.Parameter(torch.empty(self.num_vpt, self.embed_dim)))
nn.init.uniform_(getattr(self, f"vpt_{idx}"), -val, val)
setattr(self, f"vpt_drop_{idx}", nn.Dropout(self.vpt_drop))
self.patch_embed = model.patch_embed
self.cls_token = model.cls_token
self.pos_embed = model.pos_embed
self.pos_drop = model.pos_drop
self.patch_drop = model.patch_drop
self.norm_pre = model.norm_pre
self.blocks = model.blocks
self.norm = model.norm
self.encoder_channels = self.embed_dim
self.encoder_reduction = self.patch_size[0]
self.block_size = block_size if block_size is not None else self.encoder_reduction
if norm == "bn":
norm_layer = nn.BatchNorm2d
elif norm == "ln":
norm_layer = nn.LayerNorm
else:
norm_layer = _get_norm_layer(model)
if act == "relu":
activation = nn.ReLU(inplace=True)
elif act == "gelu":
activation = nn.GELU()
else:
activation = _get_activation(model)
if self.block_size < self.encoder_reduction:
assert self.block_size == self.encoder_reduction // 2, f"Block size should be half of the encoder reduction, but got {self.block_size} and {self.encoder_reduction}."
self.refiner = ConvUpsample(
in_channels=self.encoder_channels,
out_channels=self.encoder_channels,
norm_layer=norm_layer,
activation=activation,
)
elif self.block_size > self.encoder_reduction:
assert self.block_size == self.encoder_reduction * 2, f"Block size should be double of the encoder reduction, but got {self.block_size} and {self.encoder_reduction}."
self.refiner = ConvDownsample(
in_channels=self.encoder_channels,
out_channels=self.encoder_channels,
norm_layer=norm_layer,
activation=activation,
)
else:
self.refiner = ConvRefine(
in_channels=self.encoder_channels,
out_channels=self.encoder_channels,
norm_layer=norm_layer,
activation=activation,
)
self.refiner_channels = self.encoder_channels
self.refiner_reduction = self.block_size
self.decoder = nn.Identity()
self.decoder_channels = self.refiner_channels
self.reduction = self.refiner_reduction
# Adjust the positional embedding to match the new input size
self._adjust_pos_embed()
def _adjust_pos_embed(self) -> Tensor:
"""
Adjust the positional embedding to match the spatial resolution of the feature map.
Args:
orig_h, orig_w: The original spatial resolution of the image.
new_h, new_w: The new spatial resolution of the image.
"""
self.pos_embed = nn.Parameter(self._interpolate_pos_embed(self.pretrain_size[0], self.pretrain_size[1], self.input_size[0], self.input_size[1]), requires_grad=self.num_vpt == 0)
def _interpolate_pos_embed(self, orig_h: int, orig_w: int, new_h: int, new_w: int) -> Tensor:
"""
Interpolate the positional embedding to match the spatial resolution of the feature map.
Args:
orig_h, orig_w: The original spatial resolution of the image.
new_h, new_w: The new spatial resolution of the image.
"""
if (orig_h, orig_w) == (new_h, new_w):
return self.pos_embed # (1, (h * w + 1), d)
orig_h_patches, orig_w_patches = orig_h // self.patch_size[0], orig_w // self.patch_size[1]
new_h_patches, new_w_patches = new_h // self.patch_size[0], new_w // self.patch_size[1]
class_pos_embed, patch_pos_embed = self.pos_embed[:, :1, :], self.pos_embed[:, 1:, :]
patch_pos_embed = rearrange(patch_pos_embed, "1 (h w) d -> 1 d h w", h=orig_h_patches, w=orig_w_patches)
patch_pos_embed = F.interpolate(patch_pos_embed, size=(new_h_patches, new_w_patches), mode="bicubic", antialias=True)
patch_pos_embed = rearrange(patch_pos_embed, "1 d h w -> 1 (h w) d")
pos_embed = torch.cat((class_pos_embed, patch_pos_embed), dim=1)
return pos_embed
def train(self, mode: bool = True):
if self.num_vpt > 0 and mode:
self.patch_embed.eval()
self.pos_drop.eval()
self.patch_drop.eval()
self.norm_pre.eval()
self.blocks.eval()
self.norm.eval()
for idx in range(self.num_layers):
getattr(self, f"vpt_drop_{idx}").train()
self.refiner.train()
self.decoder.train()
else:
for module in self.children():
module.train(mode)
def _prepare_vpt(self, layer: int, batch_size: int, device: torch.device) -> Tensor:
vpt = getattr(self, f"vpt_{layer}").unsqueeze(0).expand(batch_size, -1, -1).to(device) # (batch_size, num_vpt, embed_dim)
vpt = getattr(self, f"vpt_drop_{layer}")(vpt)
return vpt
def _forward_patch_embed(self, x: Tensor) -> Tensor:
# This step performs 1) embed x into patches; 2) append the class token; 3) add positional embeddings.
assert len(x.shape) == 4, f"Expected input to have shape (batch_size, 3, height, width), but got {x.shape}"
batch_size, _, height, width = x.shape
# Step 1: Embed x into patches
x = self.patch_embed(x) # (b, h * w, d)
# Step 2: Append the class token
cls_token = self.cls_token.expand(batch_size, 1, -1)
x = torch.cat([cls_token, x], dim=1)
# Step 3: Add positional embeddings
pos_embed = self._interpolate_pos_embed(orig_h=self.input_size[0], orig_w=self.input_size[1], new_h=height, new_w=width).expand(batch_size, -1, -1)
x = self.pos_drop(x + pos_embed)
return x
def _forward_vpt(self, x: Tensor, idx: int) -> Tensor:
batch_size = x.shape[0]
device = x.device
# Assemble
vpt = self._prepare_vpt(idx, batch_size, device)
x = torch.cat([
x[:, :1, :], # class token
vpt,
x[:, 1:, :] # patches
], dim=1)
# Forward
x = self.blocks[idx](x)
# Disassemble
x = torch.cat([
x[:, :1, :], # class token
x[:, 1 + self.num_vpt:, :] # patches
], dim=1)
return x
def _forward(self, x: Tensor, idx: int) -> Tensor:
x = self.blocks[idx](x)
return x
def encode(self, x: Tensor) -> Tensor:
orig_h, orig_w = x.shape[-2:]
num_patches_h, num_patches_w = orig_h // self.patch_size[0], orig_w // self.patch_size[1]
x = self._forward_patch_embed(x)
x = self.patch_drop(x)
x = self.norm_pre(x)
for idx in range(self.num_layers):
x = self._forward_vpt(x, idx) if self.num_vpt > 0 else self._forward(x, idx)
x = self.norm(x)
x = x[:, 1:, :]
x = rearrange(x, "b (h w) d -> b d h w", h=num_patches_h, w=num_patches_w)
return x
def refine(self, x: Tensor) -> Tensor:
return self.refiner(x)
def decode(self, x: Tensor) -> Tensor:
return self.decoder(x)
def forward(self, x: Tensor) -> Tensor:
x = self.encode(x)
x = self.refine(x)
x = self.decode(x)
return x
def _vit(
model_name: str,
block_size: Optional[int] = None,
num_vpt: int = 32,
vpt_drop: float = 0.0,
input_size: Optional[Tuple[int, int]] = None,
norm: str = "none",
act: str = "none"
) -> ViT:
model = ViT(
model_name=model_name,
block_size=block_size,
num_vpt=num_vpt,
vpt_drop=vpt_drop,
input_size=input_size,
norm=norm,
act=act
)
return model