File size: 7,232 Bytes
53b4cd0
 
 
 
 
647b808
53b4cd0
 
 
 
981adbd
53b4cd0
 
 
 
 
 
 
c868b41
 
53b4cd0
 
981adbd
53b4cd0
 
 
 
 
a63e1cf
53b4cd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
647b808
53b4cd0
 
 
 
 
 
 
647b808
53b4cd0
 
 
 
 
647b808
53b4cd0
 
 
 
 
647b808
53b4cd0
 
 
 
647b808
53b4cd0
981adbd
 
 
53b4cd0
 
647b808
53b4cd0
 
 
 
 
 
647b808
53b4cd0
981adbd
 
 
53b4cd0
647b808
53b4cd0
647b808
53b4cd0
 
 
 
647b808
53b4cd0
981adbd
 
53b4cd0
981adbd
53b4cd0
647b808
53b4cd0
647b808
981adbd
 
 
 
 
 
 
 
f5af50a
53b4cd0
 
 
647b808
53b4cd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
647b808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53b4cd0
647b808
53b4cd0
981adbd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import gradio as gr
import torch
from PIL import Image
import numpy as np
from torchvision import models
from torchvision import transforms
from transformers import ViTForImageClassification
from torch import nn
from torch.cuda.amp import autocast
import os
from contextlib import nullcontext

# Global configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# Label mapping (HAM10K)
label_mapping = {
    0: "Меланоцитарный невус",
    1: "Меланома",
    2: "Базальноклеточная карцинома",
    3: "Актинический кератоз",
    4: "Доброкачественная кератома",
    5: "Дерматофиброма",
    6: "Сосудистые поражения"
}

# Model paths
CHECKPOINTS_PATH = os.getenv("CHECKPOINTS_PATH", "./")

# Model definitions
def get_efficientnet():
    model = models.efficientnet_v2_s(weights="IMAGENET1K_V1")
    model.classifier[1] = nn.Linear(1280, 7)
    return model.to(device)

def get_deit():
    model = ViTForImageClassification.from_pretrained(
        'facebook/deit-base-patch16-224',
        num_labels=7,
        ignore_mismatched_sizes=True
    )
    return model.to(device)

# Transforms
def transform_image(image):
    """Transform PIL image to model input format"""
    transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(
            mean=[0.485, 0.456, 0.406],
            std=[0.229, 0.224, 0.225]
        )
    ])
    return transform(image).unsqueeze(0).to(device)

# Model Handler
class ModelHandler:
    def __init__(self):
        self.efficientnet = None
        self.deit = None
        self.models_loaded = False
        self.load_models()

    def load_models(self):
        try:
            # Load EfficientNet
            self.efficientnet = get_efficientnet()
            efficientnet_path = os.path.join(CHECKPOINTS_PATH, "efficientnet_best.pth")
            self.efficientnet.load_state_dict(torch.load(efficientnet_path, map_location=device))
            self.efficientnet.eval()

            # Load DeiT
            self.deit = get_deit()
            deit_path = os.path.join(CHECKPOINTS_PATH, "deit_best.pth")
            self.deit.load_state_dict(torch.load(deit_path, map_location=device))
            self.deit.eval()

            self.models_loaded = True
            print("✅ Models loaded successfully")
        except Exception as e:
            print(f"❌ Error loading models: {str(e)}")
            self.models_loaded = False

    @torch.no_grad()
    def predict_efficientnet(self, image):
        if not self.models_loaded:
            return {"error": "Модели не загружены"}

        inputs = transform_image(image)
        # Handle autocast based on device
        ctx = autocast() if device.type == 'cuda' else nullcontext()
        with ctx:
            outputs = self.efficientnet(inputs)
            probs = torch.nn.functional.softmax(outputs, dim=1)

        return self._format_predictions(probs)

    @torch.no_grad()
    def predict_deit(self, image):
        if not self.models_loaded:
            return {"error": "Модели не загружены"}

        inputs = transform_image(image)
        ctx = autocast() if device.type == 'cuda' else nullcontext()
        with ctx:
            outputs = self.deit(pixel_values=inputs).logits  # Corrected parameter
            probs = torch.nn.functional.softmax(outputs, dim=1)

        return self._format_predictions(probs)

    @torch.no_grad()
    def predict_ensemble(self, image):
        if not self.models_loaded:
            return {"error": "Модели не загружены"}

        inputs = transform_image(image)
        ctx = autocast() if device.type == 'cuda' else nullcontext()
        with ctx:
            eff_probs = torch.nn.functional.softmax(self.efficientnet(inputs), dim=1)
            deit_probs = torch.nn.functional.softmax(self.deit(pixel_values=inputs).logits, dim=1)
            ensemble_probs = (eff_probs + deit_probs) / 2

        return self._format_predictions(ensemble_probs)

    def _format_predictions(self, probs):  # Corrected indentation
        top5_probs, top5_indices = torch.topk(probs, 5)
        result = {}
        for i in range(5):
            idx = top5_indices[0][i].item()
            label = label_mapping.get(idx, f"Класс {idx}")
            result[label] = float(top5_probs[0][i].item())
        return result

# Initialize model handler
model_handler = ModelHandler()

# Prediction wrappers
def predict_efficientnet(image):
    if image is None:
        return "⚠️ Загрузите изображение"
    return model_handler.predict_efficientnet(image)

def predict_deit(image):
    if image is None:
        return "⚠️ Загрузите изображение"
    return model_handler.predict_deit(image)

def predict_ensemble(image):
    if image is None:
        return "⚠️ Загрузите изображение"
    return model_handler.predict_ensemble(image)

# Create Gradio Blocks with Tabs
def create_interface():
    with gr.Blocks() as demo:
        gr.Markdown("# Диагностика кожных поражений (HAM10K)")
        status = "✅ Модели готовы к предсказанию" if model_handler.models_loaded else "⚠️ Предупреждение: Модели не загружены"
        gr.Markdown(f"**Состояние моделей:** {status}")

        with gr.Tabs():
            with gr.TabItem("EfficientNet"):
                img = gr.Image(label="Загрузите изображение", type="pil")
                btn = gr.Button("Предсказать", variant="primary")
                out = gr.Label(label="Результаты")
                btn.click(predict_efficientnet, inputs=img, outputs=out)
                gr.Examples(examples=["examples/akiec.jpg", "examples/bcc.jpg", "examples/df.jpg"], inputs=img)

            with gr.TabItem("DeiT"):
                img = gr.Image(label="Загрузите изображение", type="pil")
                btn = gr.Button("Предсказать", variant="primary")
                out = gr.Label(label="Результаты")
                btn.click(predict_deit, inputs=img, outputs=out)
                gr.Examples(examples=["examples/akiec.jpg", "examples/bcc.jpg", "examples/df.jpg"], inputs=img)

            with gr.TabItem("Ансамблевая модель"):
                img = gr.Image(label="Загрузите изображение", type="pil")
                btn = gr.Button("Предсказать", variant="primary")
                out = gr.Label(label="Результаты")
                btn.click(predict_ensemble, inputs=img, outputs=out)
                gr.Examples(examples=["examples/akiec.jpg", "examples/bcc.jpg", "examples/df.jpg"], inputs=img)

        return demo

# Launch interface
if __name__ == "__main__":
    interface = create_interface()
    print("🚀 Запуск интерфейса...")
    interface.launch(server_port=7860)  # Explicitly set port if needed