ZeroTimo's picture
Update agent.py
60684f0 verified
raw
history blame
3.72 kB
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_community.tools.duckduckgo_search import DuckDuckGoSearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain_google_genai import ChatGoogleGenerativeAI
# .env laden (falls lokal)
load_dotenv()
# Google API Key aus Environment
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
# --- Tools definieren ---
@tool
def multiply(a: int, b: int) -> int:
"""Multiplies two numbers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Adds two numbers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtracts two numbers."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divides two numbers."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulo(a: int, b: int) -> int:
"""Returns the remainder after division."""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return up to 2 results."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}">\n{doc.page_content}\n</Document>'
for doc in search_docs
]
)
return {"wiki_results": formatted_search_docs}
@tool
def arxiv_search(query: str) -> str:
"""Search Arxiv for a query and return up to 3 results."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}">\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
]
)
return {"arxiv_results": formatted_search_docs}
@tool
def web_search(query: str) -> str:
"""Search DuckDuckGo for a query and return results."""
search = DuckDuckGoSearchResults(max_results=5)
return search.run(query)
# Tools-Liste
tools = [
multiply,
add,
subtract,
divide,
modulo,
wiki_search,
arxiv_search,
web_search,
]
# System Prompt
system_prompt = (
"You are a highly accurate AI assistant. "
"Use tools when needed. Be very concise and precise. "
"Do not hallucinate information."
)
sys_msg = SystemMessage(content=system_prompt)
# --- Build Graph ---
def build_graph():
llm = ChatGoogleGenerativeAI(
model="gemini-2.0-flash",
google_api_key=GOOGLE_API_KEY,
temperature=0,
max_output_tokens=2048,
system_message=sys_msg,
)
llm_with_tools = llm.bind_tools(tools)
def assistant(state: MessagesState):
"""Assistant Node"""
return {"messages": [llm_with_tools.invoke(state["messages"])]}
builder = StateGraph(MessagesState)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
return builder.compile()
# --- Agent Executor für app.py ---
def agent_executor(question: str) -> str:
graph = build_graph()
messages = [HumanMessage(content=question)]
result = graph.invoke({"messages": messages})
return result["messages"][-1].content