Spaces:
Runtime error
Runtime error
import os | |
from dotenv import load_dotenv | |
from langgraph.graph import START, StateGraph, MessagesState | |
from langgraph.prebuilt import tools_condition | |
from langgraph.prebuilt import ToolNode | |
from langchain_community.tools.duckduckgo_search import DuckDuckGoSearchResults | |
from langchain_community.document_loaders import WikipediaLoader | |
from langchain_community.document_loaders import ArxivLoader | |
from langchain_core.messages import SystemMessage, HumanMessage | |
from langchain_core.tools import tool | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
# .env laden (falls lokal) | |
load_dotenv() | |
# Google API Key aus Environment | |
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") | |
# --- Tools definieren --- | |
def multiply(a: int, b: int) -> int: | |
"""Multiplies two numbers.""" | |
return a * b | |
def add(a: int, b: int) -> int: | |
"""Adds two numbers.""" | |
return a + b | |
def subtract(a: int, b: int) -> int: | |
"""Subtracts two numbers.""" | |
return a - b | |
def divide(a: int, b: int) -> float: | |
"""Divides two numbers.""" | |
if b == 0: | |
raise ValueError("Cannot divide by zero.") | |
return a / b | |
def modulo(a: int, b: int) -> int: | |
"""Returns the remainder after division.""" | |
return a % b | |
def wiki_search(query: str) -> str: | |
"""Search Wikipedia for a query and return up to 2 results.""" | |
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}">\n{doc.page_content}\n</Document>' | |
for doc in search_docs | |
] | |
) | |
return {"wiki_results": formatted_search_docs} | |
def arxiv_search(query: str) -> str: | |
"""Search Arxiv for a query and return up to 3 results.""" | |
search_docs = ArxivLoader(query=query, load_max_docs=3).load() | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}">\n{doc.page_content[:1000]}\n</Document>' | |
for doc in search_docs | |
] | |
) | |
return {"arxiv_results": formatted_search_docs} | |
def web_search(query: str) -> str: | |
"""Search DuckDuckGo for a query and return results.""" | |
search = DuckDuckGoSearchResults(max_results=5) | |
return search.run(query) | |
# Tools-Liste | |
tools = [ | |
multiply, | |
add, | |
subtract, | |
divide, | |
modulo, | |
wiki_search, | |
arxiv_search, | |
web_search, | |
] | |
# System Prompt | |
system_prompt = ( | |
"You are a highly accurate AI assistant. " | |
"Use tools when needed. Be very concise and precise. " | |
"Do not hallucinate information." | |
) | |
sys_msg = SystemMessage(content=system_prompt) | |
# --- Build Graph --- | |
def build_graph(): | |
llm = ChatGoogleGenerativeAI( | |
model="gemini-2.0-flash", | |
google_api_key=GOOGLE_API_KEY, | |
temperature=0, | |
max_output_tokens=2048, | |
system_message=sys_msg, | |
) | |
llm_with_tools = llm.bind_tools(tools) | |
def assistant(state: MessagesState): | |
"""Assistant Node""" | |
return {"messages": [llm_with_tools.invoke(state["messages"])]} | |
builder = StateGraph(MessagesState) | |
builder.add_node("assistant", assistant) | |
builder.add_node("tools", ToolNode(tools)) | |
builder.add_edge(START, "assistant") | |
builder.add_conditional_edges("assistant", tools_condition) | |
builder.add_edge("tools", "assistant") | |
return builder.compile() | |
# --- Agent Executor für app.py --- | |
def agent_executor(question: str) -> str: | |
graph = build_graph() | |
messages = [HumanMessage(content=question)] | |
result = graph.invoke({"messages": messages}) | |
return result["messages"][-1].content |