Spaces:
Runtime error
Runtime error
# app.py – vollständige, lauffähige Fassung | |
# ------------------------------------------- | |
import os | |
import gradio as gr | |
import requests | |
import pandas as pd | |
from agent import agent_executor # dein LangGraph-Agent | |
from langchain_core.messages import HumanMessage # NEU: benötigt für llm_input | |
# (Keep Constants as is) | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --------------------------------------------------------------------------- | |
# BasicAgent-Wrapper: ruft den LangGraph-Executor auf | |
# --------------------------------------------------------------------------- | |
class BasicAgent: | |
def __init__(self): | |
print("LLM Tool-Enhanced Agent initialized.") | |
# nimmt jetzt ein Dict (messages + task_id) entgegen | |
def __call__(self, llm_input: dict) -> str: | |
try: | |
result = agent_executor.invoke(llm_input) # LangGraph ausführen | |
answer = result["messages"][-1].content | |
return answer.strip() | |
except Exception as e: | |
print(f"Agent error: {e}") | |
return "I don't know." | |
# --------------------------------------------------------------------------- | |
# GAIA-Runner: Fragen holen → Agent laufen lassen → Ergebnis submitten | |
# --------------------------------------------------------------------------- | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
"""Fetch GAIA questions, run agent, submit answers.""" | |
space_id = os.getenv("SPACE_ID") | |
if profile: | |
username = f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# Agent instanziieren | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
return f"Error initializing agent: {e}", None | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# Fragen holen | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except Exception as e: | |
return f"Error fetching questions: {e}", None | |
# Agent auf jede Frage anwenden | |
results_log, answers_payload = [], [] | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
continue | |
try: | |
llm_input = { | |
"messages": [HumanMessage(content=question_text)], | |
"task_id": task_id, # ← WICHTIG! | |
} | |
submitted_answer = agent(llm_input) | |
answers_payload.append( | |
{"task_id": task_id, "submitted_answer": submitted_answer} | |
) | |
results_log.append( | |
{"Task ID": task_id, "Question": question_text, | |
"Submitted Answer": submitted_answer} | |
) | |
except Exception as e: | |
results_log.append( | |
{"Task ID": task_id, "Question": question_text, | |
"Submitted Answer": f"AGENT ERROR: {e}"} | |
) | |
if not answers_payload: | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# Submission | |
submission_data = { | |
"username": username.strip(), | |
"agent_code": agent_code, | |
"answers": answers_payload, | |
} | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/" | |
f"{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
return final_status, pd.DataFrame(results_log) | |
except Exception as e: | |
status_message = f"Submission Failed: {e}" | |
return status_message, pd.DataFrame(results_log) | |
# --------------------------------------------------------------------------- | |
# Gradio-UI (unverändert) | |
# --------------------------------------------------------------------------- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", | |
lines=5, interactive=False) | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click(fn=run_and_submit_all, | |
outputs=[status_output, results_table]) | |
if __name__ == "__main__": | |
demo.launch(debug=True, share=False) |