ZeroTimo's picture
Update app.py
a92112f verified
raw
history blame
5.24 kB
# app.py – vollständige, lauffähige Fassung
# -------------------------------------------
import os
import gradio as gr
import requests
import pandas as pd
from agent import agent_executor # dein LangGraph-Agent
from langchain_core.messages import HumanMessage # NEU: benötigt für llm_input
# (Keep Constants as is)
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# ---------------------------------------------------------------------------
# BasicAgent-Wrapper: ruft den LangGraph-Executor auf
# ---------------------------------------------------------------------------
class BasicAgent:
def __init__(self):
print("LLM Tool-Enhanced Agent initialized.")
# nimmt jetzt ein Dict (messages + task_id) entgegen
def __call__(self, llm_input: dict) -> str:
try:
result = agent_executor.invoke(llm_input) # LangGraph ausführen
answer = result["messages"][-1].content
return answer.strip()
except Exception as e:
print(f"Agent error: {e}")
return "I don't know."
# ---------------------------------------------------------------------------
# GAIA-Runner: Fragen holen → Agent laufen lassen → Ergebnis submitten
# ---------------------------------------------------------------------------
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""Fetch GAIA questions, run agent, submit answers."""
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# Agent instanziieren
try:
agent = BasicAgent()
except Exception as e:
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# Fragen holen
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
return f"Error fetching questions: {e}", None
# Agent auf jede Frage anwenden
results_log, answers_payload = [], []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
llm_input = {
"messages": [HumanMessage(content=question_text)],
"task_id": task_id, # ← WICHTIG!
}
submitted_answer = agent(llm_input)
answers_payload.append(
{"task_id": task_id, "submitted_answer": submitted_answer}
)
results_log.append(
{"Task ID": task_id, "Question": question_text,
"Submitted Answer": submitted_answer}
)
except Exception as e:
results_log.append(
{"Task ID": task_id, "Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}"}
)
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# Submission
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload,
}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/"
f"{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
return final_status, pd.DataFrame(results_log)
except Exception as e:
status_message = f"Submission Failed: {e}"
return status_message, pd.DataFrame(results_log)
# ---------------------------------------------------------------------------
# Gradio-UI (unverändert)
# ---------------------------------------------------------------------------
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result",
lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all,
outputs=[status_output, results_table])
if __name__ == "__main__":
demo.launch(debug=True, share=False)